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Abstract: Anthrax, a zoonotic disease affecting both livestock and humans globally, is caused by
Bacillus anthracis. The objectives of this study were the following: (1) to identify environmental
risk factors for anthrax and use this information to develop an improved predictive risk map, and
(2) to estimate spatial variation in basic reproduction number (Ro) and herd immunity threshold
at the village level, which can be used to optimize vaccination policies within high-risk regions.
Based on the anthrax incidences from 2000-2023 and vaccine administration figures between 2008
and 2022 in Karnataka, this study depicted spatiotemporal pattern analysis to derive a risk map
employing machine learning algorithms and estimate Ro and herd immunity threshold for better
vaccination coverage. Risk factors considered were key meteorological, remote sensing, soil, and
geographical parameters. Spatial autocorrelation and SaTScan analysis revealed the presence of
hotspots and clusters predominantly in the southern, central, and uppermost northern districts of
Karnataka and temporal cluster distribution between June and September. Factors significantly
associated with anthrax were air temperature, surface pressure, land surface temperature (LST),
enhanced vegetation index (EVI), potential evapotranspiration (PET), soil temperature, soil moisture,
pH, available potassium, sulphur, and boron, elevation, and proximity to waterbodies and waterways.
Ensemble technique with random forest and classification tree models were used to improve the
prediction accuracy of anthrax. High-risk areas are expected in villages in the southern, central,
and extreme northern districts of Karnataka. The estimated Ro revealed 11 high-risk districts
with Ro > 1.50 and respective herd immunity thresholds ranging from 11.24% to 55.47%, and the
assessment of vaccination coverage at the 70%, 80%, and 90% vaccine efficacy levels, all serving for
need-based strategic vaccine allocation. A comparison analysis of vaccinations administered and
vaccination coverage estimated in this study is used to illustrate difference in the supply and vaccine
force. The findings from the present study may support in planning preventive interventions, resource
allocation, especially of vaccines, and other control strategies against anthrax across Karnataka,
specifically focusing on predicted high-risk regions.

Keywords: anthrax; spatiotemporal pattern; machine learning; risk map; basic reproduction number;

vaccination coverage; herd immunity; management

1. Introduction

Anthrax is a worldwide zoonotic disease caused by Bacillus anthracis, a rod-shaped,
Gram-positive, and spore-forming soil-borne bacterium (B. anthracis) [1,2]. The pathogen
is mainly transmitted to herbivorous mammals, and human beings are also at risk of
becoming infected through contact with infected animals or contaminated animal products
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such as meat, hide, and wool [1,3,4]. Historically, anthrax has been a global menace to
both developed and developing countries, causing sporadic epidemics of major public
health concern apart from economic losses, notably in the livestock sectors [5]. Anthrax
continues to affect many regions of the globe, including Asia [6-8], Australia [9], North and
South America [10], and various European [11,12] and sub-Saharan African countries [13].
Anthrax is endemic in many parts of Asia, with significant documentation across the
continent and higher disease incidence rates particularly in China and Mongolia as well as
former Soviet Union nations, including Kazakhstan and Uzbekistan [14]. Among southern
Asian countries, anthrax is more prevalent in India and Bangladesh [6,15,16].

Environmental factors such as temperature, rainfall, wind direction, moisture, and soil
temperature, together with vegetation, aggravate the spatial distribution of anthrax [2,17].
The geographic distribution of anthrax is largely determined by the propensity for B.
anthracis to form spores and survive in different environmental niches [5,18]. The suitable
environmental factors and ingestion of spores by susceptible animals may lead to anthrax
incidence [19,20]. Due to its high resistance against extreme temperature, radiation, and
chemical substances, the spore could exist several decades in the environment [18,21-23].
The main way of transmission in animals is the intake of spores while grazing in areas
where anthrax incidence has occurred before. The long-distance dispersal of spores is
influenced by meteorological conditions, including floods and strong winds [24,25], as well
as birds, scavengers, or biting flies act as biological carriers that play important roles in
transmitting infectious agents [26-29]. Additionally, certain soil properties such as high
moisture content and calcium availability in combination with organic matter and neutral
to alkaline pH are characteristics correlated with the occurrence of anthrax [18,28]. Spores
tend to accumulate in low-lying regions through runoff from rainfall and water streams,
thereby impacting the spatial distribution of incidence [30].

While assessing areas with anthrax occurrence, some zones remain free of disease
because of the environment being non-conducive to the growth of the pathogen or even due
to herd immunity. However, the major concern is the under-reporting of cases, improper
disposal of carcasses of infected animals, and poor health and infrastructure facilities, as
well as improper vaccination coverage in outbreak areas [31-33]. In Karnataka, the anthrax
vaccine administered is the ANTHRAX SPORE VACCINE, LIVE, IP. This vaccine contains
live spores from the avirulent Sterne strain of B. anthracis, suspended in 50% glycerin
saline. Each cattle dose includes 10 million spores of B. anthracis. It is used as prophylactic
vaccination against anthrax in animals and is effective even during outbreaks; usually, ring
vaccination is conducted for up to 5 years, covering a 5 km radius of outbreak areas. The
vaccine is supplied in 100-dose bottles, with each 100 mL bottle intended for subcutaneous
injection. Cattle, buffalo, and horses receive 1 mL, while sheep, goats, and pigs receive
0.5 mL, and injections are given by veterinary doctors with all precautionary measures. All
healthy animals over six months old (cattle and buffalo) and over three months old (sheep,
goats, and pigs) should be vaccinated annually before the monsoon season in endemic areas.
The vaccine must be stored and transported at 2-8 °C and has a shelf life of 12 months
under these conditions [34,35]. The disease regularly occurs in countries where animal
vaccination is not widespread. Although vaccines and several effective antibiotics exist,
treatment is usually scattered in the underdeveloped parts of the world where anthrax is
common. Information on anthrax distribution is important in control and management
strategies; for instance, targeted vaccination and the optimization of resource allocation
can take place by prioritizing prevention and control strategies in high-risk regions. There
are many studies on different spatial and temporal levels of most aspects of anthrax in
India. These studies include research in Karnataka on the effects of the El Nifio and La Nifia
phenomena on anthrax [36]; assessments of basic reproduction numbers to gauge the effects
of precipitation on anthrax in Karnataka [37]; and analyses on the spatial and temporal
patterns of anthrax in livestock [8,36], wildlife [38—40], and human populations [41].

Although such studies have advanced understanding of anthrax ecology, spread,
and dynamics in both space and time, they still lack further insights into the possible
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effects of environmental factors on anthrax occurrence and resource allocation that would
be needed for optimal vaccine distribution based on the disease burden for limiting the
spread of anthrax. Hence, keeping all these limitations in view, the present study was
carried out for the state of Karnataka using 11 important meteorological and remote sensing
variables, 10 soil parameters, and 4 geographical parameters as predictor variables for
the retrospective data from 2000 to 2023. We used several machine-learning models and
adopted an ensembling approach for mapping the risk of anthrax among livestock based
on key climatic variables. The present research had two-fold objectives: firstly, to assess
the current distribution of anthrax incidence and project the future habitat suitability
and occurrence of anthrax events based on environmental predictors; and, secondly, to
compute the minimum vaccination coverage within the livestock population that could be
applied to effectively prevent the spread of anthrax and eventually achieve a disease-free
environment in the near future. A good understanding of the spatiotemporal patterns of
anthrax risk and their determinants is very important in informing the surveillance, control,
and prevention strategies that are some of the essential tasks by farmers and veterinary
and public health personnel.

2. Materials and Methods
2.1. Study Area

Karnataka is the southwestern state of peninsular India, characterized by 11.5° N
and 18.5° N latitudes and 74° E to 78.5° E longitudes. The state has 31 districts and
29,340 villages, with a varying landscape from the green Western Ghats to the coastal plains.
There is a tropical to subtropical climate that supports rich biodiversity, particularly in the
Western Ghats. In this regard, livestock farming is essential. Prominent ones include cattle,
buffalo, sheep, goats, poultry, and pigs, with 29.00 million livestock animals. Karnataka
is basically a leading milk-producing state, wherein dairy cooperatives play a major role
in collection and distribution. Government initiatives were undertaken for improving
livestock rearing, enhancing productivity, and lifting rural livelihoods.

2.2. Data Source
2.2.1. Anthrax Incidence Data

Anthrax is a notifiable disease in India; all suspected and confirmed cases in animals
and humans are to be reported. Hence, the system of surveillance for anthrax in animals
and human populations is based on notification. District veterinary offices and animal
health centers are required to report animal diseases to the State Department of Animal
Husbandry and Veterinary Services, where these data are systematically maintained. Con-
firmation of anthrax cases usually includes clinical observation of symptoms, microscopic
examination of blood smears, culture examination, and, more recently, PCR testing. Data
from all the states are subsequently consolidated and sent to the National Animal Disease
Referral Expert System v2 (https:/ /nivedi.res.in/Nadres_v2/ohai/ accessed on 17 May
2024) developed by the ICAR-National Institute of Veterinary Epidemiology and Disease
Informatics, Bengaluru, for electronic archival material. In this study, georeferenced an-
thrax data at the village level, incidence, and year and month of occurrence from 2000 to
2023 of livestock anthrax were extracted from the NADRES v2, and secondary data were
sourced from the literature [42]. The anthrax incidence reported in various web sources,
such as ProMED News, was gathered and cross-referenced with our dataset for accuracy
and validity.

2.2.2. Pseudo-Absence Data

A greater proportion of pseudo-absence to present data may influence model perfor-
mance either in a positive or negative way. This will add biases to model inter-comparisons,
for which prevalence should be maintained constant at an intermediate level. To avoid bias
in the comparison, pseudo-absence data generation on livestock anthrax were made. In
line with past research, a prevalence rate was set at 0.5 to ensure a balanced proportion of
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pseudo-absences in relation to presences in the dataset [43-45]. Following that, a buffer
of 50-70 km around the occurrence points was created to prevent an overlap of any cells
comprising both presence and absence data, as well as to make sure that those cells did
not correspond to typical environmental conditions, as in previous methods [46]. Random
selection of pseudo-absence points was performed in the whole background area; however,
grid points lying in the buffer zone were excluded.

2.2.3. Livestock Population Data

India has an abundance of livestock, with around 535.78 million animals overall, of
which 192.49 million comprise cattle. There are 109.85 million buffalo, 9.06 million pigs,
148.88 million goats, 74.26 million sheep, 0.44 million Mithun and yaks, 0.34 million horses
and ponies, 0.08 million mules, 0.12 million donkeys, and 0.25 million camels (Department
of Animal Husbandry & Dairying (DAHD)—20th Livestock Census of India) in India.
In Karnataka, the livestock population includes 8.47 million cattle, 2.98 million buffalo,
11.05 million sheep, and 6.16 million goats. The village-level livestock population data from
Karnataka of four major species reported to be susceptible to anthrax, i.e., cattle, buffalo,
sheep, and goats, were collected from the 20th livestock census of India for further analysis.

2.3. Risk Factors
2.3.1. Meteorological Data

The meteorological variables utilized in this study were sourced from the Global Land
Data Assimilation System (GLDAS version 2), available at https:/ /ldas.gsfc.nasa.gov/gldas
accessed on 20 May 2024 [47]. These variables include air temperature (°C), potential
evaporation rate (W/ m?), rainfall precipitation rate (kg/ m?/s), specific humidity (kg/kg),
surface pressure (Pa), and wind speed (m/s). The data available at a spatial resolution
of 0.25° x 0.25° in the network common data format (netCDF) were extracted (Table 1).
Subsequently, they were converted into CSV files using R Studio with packages ‘raster’,
‘rgdal’, ‘qdap’, ‘data.table’, and ‘ncdf4’ to facilitate further analysis.

Table 1. Risk factor data and their sources used in the current study.

Variable

Air temperature
Potential evaporation rate
Rainfall precipitation rate

Specific humidity

Surface pressure

Wind speed

LST
NDVI
EVI
PET
LAI

Soil temperature

Soil moisture

Source Units/Range Attribute Resolution
Meteorological parameters
k netCDF 0.25° x 0.25°
GLDAS version 2 w /n212 netCDF 0.25° x 0.25°
https:/ /1das.gsfc.nasa.gov/gldas accessed kg/m=/s netCDF 0'250 X 0’250
on 20 May 2024 kg/kg netCDF 0.25° x 0.25
pa netCDF 0.25° x 0.25°
m/s netCDF 0.25° x 0.25°
Remote sensing parameters
°C Raster 1km x 1km
MODIS —-1to1l Raster 500 m x 500 m
https:/ /ladsweb.modaps.eosdis.nasa.gov —1tol Raster 500 m x 500 m
accessed on 21 May 2024 mm Raster 500 m x 500 m
m?/m? Raster 500 m x 500 m
Soil parameters
NOAA
https:/ /www.psl.noaa.gov accessed on 20 k netCDF 1km x 1km
May 2024
GLDAS version 2
https:/ /1das.gsfc.nasa.gov/gldas accessed kg/m? netCDF 0.25° x 0.25°

on 20 May 2024
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Table 1. Cont.
Variable Source Units/Range Attribute Resolution
Acidic < 6.5
Soil pH Neutral 6.5-7.5 tab NA
. Karnataka soil health data (ICRISAT Alkah?e >75

Organic carbon Yo tab NA

. .. Development Centre, Government of
Electrical conductivity ds/m tab NA
Availabl tassi Karnataka) tab NA

varavie potassium https:/ /doi.org/10.21421/D2/QYCEGR ppm a
Available phosphorous accessed on 22 May 2024 ppm tab NA
Available zinc y ppm tab NA
Available sulphur ppm tab NA
Available boron ppm tab NA
Geographical parameters
DIVA-GIS
Elevation (https:/ /diva-gis.org/ accessed on 22 May m Shape file NA
2024)

Roadways OpenStreetMap Data Extracts (https: m Shape file NA
Waterbodies / /download.geofabrik.de/asia/india.html m Shape file NA
Waterways accessed on 22 May 2024) m Shape file NA

netCDF: network common data format, NA: not available.

2.3.2. Remote Sensing Data

The satellite data utilized in this study were retrieved from the Moderate Resolution
Imaging Spectroradiometer (MODIS) [48]. These include the enhanced vegetation index
(EVI) and potential evapotranspiration (PET) with a 16-day interval at a resolution of 500 m,
land surface temperature (LST) with an 8-day interval at a resolution of 1-km, normalized
difference vegetation index (NDVI) with a 16-day interval at a resolution of 500 m, and
potential leaf area index (LAI) with a 16-day interval at a resolution of 500 m. These
parameters were obtained from image products such as MOD16A2, MOD11A2, MOD13A1,
and MOD15A2H, which were available in Hierarchical Data Format (HDF) file format with
various spatial and temporal resolutions (Table 1). To process these data, the R packages
“gdalutils” and “modis” were utilized to extract information from HDF files and convert
them into GeoTIFF files. Subsequently, the R package “raster” was employed to organize
all variables into raster (grid) type files, with each predictor represented as a raster layer
reflecting a specific variable of interest.

2.3.3. Soil Profile Data

Variation in animal health across geographic zones is somehow linked to variation in
soils and their properties [49]. Some animal infectious diseases can originate from particular
soils, and more direct effects may be expected if the pathogen is able to survive, grow, and
reproduce in the soil [50]. B. anthracis is an organism that can survive in soil for decades.
The current study considered some of the available soil parameters to determine their effect
on anthrax spore survival and germination. Soil temperature data (k) were retrieved from
the National Oceanic and Atmospheric Administration (NOAA) at a spatial resolution of
1 km x 1 km in netCDF format. The soil moisture (kg/ m?) was extracted from GLDAS at
a 0.25° x 0.25° spatial resolution in the netCDF format. The database of Karnataka soil
health data (ICRISAT Development Centre, Government of Karnataka, 2016) was used
to obtain other soil parameters, including available potassium, phosphorus, boron, zinc,
sulphur nutrient status, organic carbon, electrical conductivity, and soil pH. These data
were downloaded in the available tab format and converted to the required format using
the R program.

2.3.4. Geographical Parameters

The current study included data on elevation extracted from DIVA-GIS (https://diva-
gis.org/ accessed on 22 May 2024), roadways (National Highways), and waterbodies and
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waterways extracted from OpenStreetMap Data Extracts (https://download.geofabrik.de/
asia/india.html accessed on 22 May 2024). The data available in a zone-wise manner for
India were downloaded in shapefile (shp.) format. These shapefiles were merged using
the geopandas and pandas packages in Python. These shapefiles were used for mapping
anthrax incidence regions over all geographical parameters under study. QGIS was used
to estimate the distance from actual disease incidence regions to locations of waterways,
waterbodies, and roadways in an attempt to understand the influence of those parameters
on anthrax incidence.

2.4. Data Pre-Processing and Feature Engineering

Data pertaining to incidence of anthrax cases and all other relevant risk variables
from various electronic sources were procured. A monthly anthrax case incidence was
estimated and utilized as the dependent variable. The risk parameters were used on a
monthly basis as independent variables. Data pre-processing is an iterative process of
significant importance that helps in the conversion of raw data into comprehensible and
practical formats. Normally, a raw dataset exhibits incompleteness and inconsistencies,
lacks patterns and trends, and contains a lot of errors. Data pre-processing was performed
to deal with noise elimination, handle missing data, detect anomalies, and label encoding
in the datasets before the commencement of machine learning modelling. Consequently, in
this work, data pre-processing was treated in a structured manner and encompassed the
four primary stages: data cleaning, integration, transformation, and reduction. The stages
were brought forth in a coherent way to guarantee both the quality and relevance of data
for subsequent analysis and modelling tasks. First of all, errors and inconsistencies in the
dataset were identified and corrected through careful data-cleaning procedures dealing with
duplicates, outliers, and missing values. Various techniques, such as removal, imputation,
and transformation, were applied to ensure data integrity and consistency. During the
process of data integration, information gathered from various sources was combined into
one single dataset, thereby overcoming the difficulties in format, structure, and semantics.
This facilitated the creation of a unified dataset for analysis and model development.
Following integration, data transformation techniques were employed to prepare the
dataset for analysis, including normalization and standardization, which standardized
the data attributes and facilitated subsequent modelling tasks. Finally, data reduction
techniques, including feature selection and extraction algorithms, were implemented to
reduce the dimensionality of the dataset while retaining critical information. By adhering
to this methodology, we ensured that the dataset was thoroughly processed, optimized,
and primed for effective utilization in machine learning tasks.

2.5. Spatial and Temporal Distribution of Anthrax Incidence

The spatial incidence mapping in our study was carried out to visualize the distribu-
tion of anthrax disease across various districts and villages reported between 2000 and 2023.
In the present study, the district-level cumulative anthrax incidences were calculated and
plotted to illustrate the geographic spread and endemicity of anthrax incidence in the study
area. This provided insight into the prevalence and distribution pattern of the disease.
Additionally, we investigated the temporal distribution of anthrax incidence by estimating
cumulative incidences on a yearly and monthly basis from 2000 to 2023. This analysis
aimed to check any seasonal variation in the incidence of anthrax within the period under
consideration. By plotting these cumulative incidences over space and time, we aimed to
gain a deeper understanding of the spatiotemporal dynamics of anthrax incidence, which
is very critical in informing timely interventions and public health strategies.

2.6. Spatial Autocorrelation-Hotspot Analysis

In its simplest expression, spatial autocorrelation is the relationship between variable
values, mainly influenced by their proximity in two-dimensional space [51]. There are
various approaches, like Moran -I statistics [52] or Getis—Ord Gi* index [36] for spatial
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autocorrelation analysis. This study used the local Getis—Ord Gi* index to identify local
autocorrelation and find the differences of the neighboring cell values for a geographic area.
This index was effective in detecting “hot spots” demonstrating positive autocorrelation
and “cold spots” indicating negative autocorrelation [53]. The positive Z score indicates
the presence of a hotspot; the negative Z score, a cold spot. A Z score near zero indicates
no apparent spatial cluster. It is a standardized measure that explains the concentration
or dispersion of the disease. The deviation from zero shows the intensity of clustering or
dispersion. A positive value reflects clustering in areas of high prevalence, and a negative
value represents dispersion in areas with low prevalence of the disease [54].

2.7. Space-Time Cluster Analysis

The spatiotemporal clustering of anthrax incidences was assessed using the scan
statistic test in SaTScan software version 9.6 [55]. SaTScan uses moving windows of different
diameters to identify spatial clusters in a study region. This tool also identifies temporal
clusters and demarcates ellipses or circles whose size keeps changing dynamically in a three-
dimensional study region. Clusters are reported for circles with observed values greater
than the predicted values. For the SaTScan analysis, village-level longitude and latitude
coordinates were obtained for conducting clustering of the dataset for each attribute that
related disease activity, case versus control, including both temporal and spatial features.
It was applied to a yearly case dataset, taking the total number of incidents for every
epidemiological unit recorded for that particular year and adjusting it against its total
population. For this reason, the significance level for appropriate cluster identification was
set in advance at p < 0.05.

2.8. Linear Discriminant Analysis

Linear discriminant analysis is a classification-based machine learning algorithm that
is developed from the theory of Fisher’s linear discriminant. Risk parameters were analyzed
in the process of discriminant analysis to establish a linear relationship among them, which
in turn became a strong foundation towards the precise understanding of how the attribute
impacts computation and assessment. In this study, SaTScan was applied for detection of
the significant and non-significant space-time clusters to identify risk occurrences. Then
LDA was used to examine the variation of the environmental risk factors in these identified
regions. The binary clustering status variable was assigned by the clustering status, where
status = 1 for clustered regions and status = 0 for non-clustered regions. In the present
study, an LDA was carried out with a pre-determined level of statistical significance of
p < 0.05 for all variables.

2.9. Modelling Anthrax Niches through Machine Learning

Several machine learning algorithms were applied to accurately estimate the effect of
significant environmental risk factors on disease prediction. A total of 11 machine learning
models, including naive Bayes (NB), flexible discriminant analysis (FDA), random forest
(RF), support vector machine (SVM), multiple adaptive regression splines (MARS), adaptive
boosting (ADA), gradient boosting machine (GBM), artificial neural network (NNET),
classification tree analysis (CT), generalized linear models (GLMs), and generalized additive
models (GAMSs), were trained and validated to determine disease risk.

2.10. Model Evaluation Criterion

In this research, predictions based on significant environmental predictor variables
were generated using different model artifacts. Comprehensive sets of evaluation metrics,
including the Cohen’s kappa (Heidke skill score), receiver operating characteristic (ROC)
curve, true skill statistics (TSS), area under the ROC curve (AUC), accuracy, precision,
sensitivity, specificity, F1 score, logistic loss (LOGLOSS), error rate, and Gini coefficient,
were used to assess the discriminative capacity of the fitted models [56-58]. These metrics



Vaccines 2024, 12, 1081

8 of 26

were utilized to evaluate the accuracy of the prediction models based on the presence (1) or
absence (0) of data.

2.11. Ensemble Modelling Approach for Better Accuracy

This study aggregated the outcomes of separate forecasts from multiple model meth-
ods using a Raster Stack approach [59]. Instead of relying on one best model, it is rec-
ommended to make a prediction by combining results of multiple models that return
scores between 0 and 1. Averaging these scores yielded the best prediction [56,60]. In
the present study, the average model score was derived by considering models that met
the following criteria for further assessment of disease risk: Kappa > 0.60, ROC > 0.90,
TSS > 0.70, AUC > 0.90, accuracy > 0.80, precision > 0.90, sensitivity > 0.90, specificity > 0.70,
F1 score > 0.90, LOGLOSS < 0.30, error rate < 0.20, and Gini coefficient > 0.80 [61-63]. This
approach ensures a robust evaluation and aggregation of predictions for a more accurate
risk assessment.

2.12. Basic Reproduction Number Estimation to Understand Anthrax Transmission Dynamics

The basic reproduction number (Ro) is a threshold index that describes the extent of
pathogen transmission. It is defined as the average number of secondary cases generated
by a single infected individual over its entire period of infectiousness when introduced into
a completely susceptible population. The importance of Ro lies in its threshold value: if
Ro > 1, then it indicates a high chance of the disease spreading, while values below 1 mean
there is a low risk. Various approaches exist for estimating Ro, encompassing methods
such as the attack rate (AR) [64], exponential growth rate (EG) [65], maximum likelihood
estimation (ML) [66], and time-dependent method (TD) [67,68]. In this study, we employed
the AR, EG, and ML methods to determine the basic reproduction number according to
previous studies [36,69].

2.12.1. Attack Rate Estimate (AR)

The proportion of a population eventually infected is called the attack rate (AR) [64,70].
The required assumptions are a homogeneous mixing, closed population, and no inter-
vention during the outbreak. The advantage of this approach is its simplicity, helping to
estimate the spread of disease and predict outcomes based on initial conditions. However,
the model’s assumptions do not always hold true in reality. The basic reproduction number
and AR are related through (Equation (1)):

log (155

Ro= " AR—({1=%0)

where So is the basic vulnerability rate of population.

2.12.2. Exponential Growth Rate (EG)

The Exponential Growth (EG) method estimates the Ro by fitting an exponential
growth curve to early outbreak data. It is simple and intuitive, as it directly links Ro to the
rate of case increase, making it easy to understand. This method is particularly useful in
the early stages of an outbreak, where exponential growth is often observed, and it is quick
to compute [65,71]. However, it assumes exponential growth, which may not hold as the
outbreak progresses or interventions are introduced. It is also sensitive to the quality of
initial data and does not account for varying transmission rates across different populations.
The EG method works best in the early phase of an epidemic, when data are available and
growth is rapid. During the early stages of an epidemic, Ro was linked to exponential
growth as (Equation (2)):

1

ROZ*M(l—r) (2)
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where 1 is the exponential growth rate and M is the moment-generating function of genera-
tion time distribution. To obtain the growth rate, r, Poisson regression was used [72].

2.12.3. Maximum Likelihood (ML) Estimate

The maximum likelihood of White and Pagano is based on the assumption that the
number of secondary cases generated by an affected individual is Poisson distributed, with
R representing the expected value. Optimizing log-likelihood over an exponential growth
phase yields R. Given observation of (Ny,Njy, ..., Nt) incident cases over consecutive time
units and a generation time distribution w, R is estimated by maximizing the log-likelihood
(Equation (3)) [66,67,70], as follows:

T e_ut Nt
LL(R) = thl log <N:'lt> where, 1 = RE_1tn, ,w; (3)

Here again, the likelihood must be calculated on a period of exponential growth, and
the deviance R-squared measure may be used to select the best period. No assumption is
made on mixing in the population. This approach is statistically rigorous, offering reliable
estimates when sufficient data are available, and it can accommodate various generation
time distributions, making it flexible. It is particularly useful during the intermediate
phase of an outbreak when exponential growth has slowed. However, it requires detailed
and accurate data and can be computationally intensive due to the complex likelihood
maximization process. It may also struggle with sparse data, leading to less reliable
estimates. This method is best suited for mid-phase epidemics when more data are available
and greater accuracy is needed.

The methodology applied can be seen in similar studies on B. anthracis [36,37,69],
where similar techniques were followed for Ro estimation. After calculating Ro values
using these methods, the highest value among all estimates is selected as the final Ro for
a particular village. This maximum value is chosen because it represents the worst-case
scenario for the basic reproduction number. Since Ro indicates the number of secondary
cases generated by a single case, the highest value reflects the greatest transmission potential
for the disease.

The computational models used for estimating the Ro offer more reliable results by
accounting for various generation time distributions. They are also dynamic, allowing
for the inclusion of intervention effects. However, these methods face limitations, such as
unreliable estimates due to inaccurate or limited data during the early stages of an outbreak.
Additionally, they require a clear understanding of the time-dependency of case numbers,
which is not always available, and the outcomes are often highly sensitive to data noise.
Calculations of the Ro were performed using the R statistical software, version 3.6.3.

2.13. Estimation of Herd Immunity Threshold (HIT)

Herd immunity is achieved when a significant portion of the livestock population,
or the herd, is vaccinated, thereby offering protection to susceptible animals. The more
animals that are vaccinated in the population, the lower the likelihood that an unvaccinated
susceptible animal will encounter the infection. With a large number of immune animals,
it becomes challenging for diseases to spread between individuals, effectively breaking
the chain of infection. The herd immunity threshold refers to the proportion of the animal
population that needs to be immunized against an infectious disease for the said disease
to be stabilized within the herd or population. When this threshold is reached through
vaccination, each case leads to precisely one more case, causing the infection to become
stable in the population of livestock, i.e., Ro = 1. The HIT was determined according to
previous methods [73,74] using the formula (Equation (4)):

1
HIT=1- — 4
Ro (4)
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The value obtained can be used in the course of controlling anthrax disease through
vaccination programs in livestock.

2.14. Determination of Vaccine Coverage (Vc)

Ro serves as a crucial factor in determining the minimum vaccination coverage needed
for disease elimination within the livestock population in a specific geographical region.
Utilizing the herd immunity threshold, which incorporates Ro values, the minimum vacci-
nation coverage (Vc) necessary for controlling or eliminating livestock diseases was calcu-
lated for regions that are identified to be at anthrax risk, as previously documented [73,74]
(Equation (5)). The following calculation provides essential insights into the vaccination
strategies required to effectively combat diseases within the livestock population:

Ve = (1 - R1>Ve (5)

0}

where Ve—vaccine efficacy level at 70%, 80%, and 90%
Vaccine efficacy typically depends on the type of vaccine and livestock population.
Therefore, based on the calculated Ro values, the required vaccination coverage for anthrax

disease was estimated by considering three scenarios of vaccine efficacy at 70%, 80%,
and 90%.

2.15. Vaccination Supply and Demand Status in Karnataka

District-wise anthrax vaccination supply data from 2008-2022 were obtained from the
State Department of Animal Husbandry and Veterinary Services, Bengaluru, Karnataka,
India. The differences between the vaccination supply and actual vaccine requirements
were compared to understand distribution of vaccine supply and strategizing optimal
vaccine allocation based on the requirements.

2.16. Statistical Analysis and Packages

All the statistical analyses, risk mapping, and disease forecasting were conducted
utilizing R statistical software version 3.1.3 (R Foundation for Statistical Computing, Vienna,
Austria; version 3.4.3). R is a versatile platform for data mining, computation, and graph-
ical presentation. It mainly relies on various R packages for data extraction, alignment,
annotation, analysis, fitting, and model validation. As for the analysis, the present study
used various R packages: plyr, dplyr, rgdal, raster, data.table, openxlsx, tmap, sp, spdep,
sf, BAMM, foreign, geosphere, MASS, biomod?2, dsimo, mgcv, randomforest, mda, gbm,
and earth. In addition, hotspot and space-time cluster analyses were performed using
Getis-Ord index and SaTScan v9, respectively.

3. Results
3.1. Spatial Distribution of Anthrax

The district-wise cumulative anthrax incidence that occurred between 2000 and 2023
was determined and mapped to understand the spatial endemicity of anthrax in Karnataka
(Figure 1A). The reported cumulative anthrax incidences were found to be the highest in
the Bellary, Davanagere, and Chikkaballapura districts (range > 50 anthrax incidences),
followed by the Koppal, Tumkur, and Bengaluru Rural districts (21-50 anthrax incidences),
whereas in the Chamrajnagar, Chitradurga, Kolar, Hassan, Shimoga, and Raichur districts,
6-20 anthrax incidences were recorded. In districts such as Bengaluru Urban, Mandya,
Mysuru, Kodagu, Uttara Kannada, Haveri, Dharwad, Bagalkot, Gulbarga, and Bidar,
around 1-5 anthrax incidences were recorded. The actual geolocations of villages where
anthrax incidences were recorded between 2000 and 2023 are presented in Figure 1B.
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District level

Figure 1. (A) Spatial map representing cumulative anthrax incidences recorded in Karnataka between
2000 and 2023, (B) Actual geolocations of villages where anthrax incidences were recorded between
2000 and 2023.

3.2. Temporal Distribution of Anthrax

The yearly distribution of anthrax incidence revealed significant peaks recorded
between 2000 and 2023 (Figure 2A). A peak was observed between 2003 and 2005 with
>30 recorded anthrax incidences, followed by a drastic decrease in anthrax incidences until
2014. One more peak was observed in 2015 with >30 anthrax incidences and >50 incidences
in 2016, and a gradual decrease in anthrax incidences was noticed thereafter. An analysis of
cumulative anthrax incidence reports from 2000 to 2023 revealed notable fluctuations across
months (Figure 2B). The anthrax incidence in the study area was recorded throughout the
year and was greater during the transition period from the dry to wet season, particularly
from June to September, when precipitation and vegetation increase and the temperature
starts declining after reaching maximum values (45 °C). Also, a greater number of anthrax
incidences can be seen during January to March when most of the livestock animals
migrate towards grazing areas located near waterbodies/waterways for feed and water
purposes. These variations underscore the dynamic nature of anthrax incidence over time,
highlighting the need for further investigation into contributing factors.
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Figure 2. (A) Annual number of livestock anthrax incidences recorded in Karnataka during 2000-2023;
(B) Cumulative monthly anthrax incidences recorded in Karnataka during 2000-2023.

3.3. Spatial Autocorrelation Hotspot Analysis

The Getis—Ord Gi* index method serves to evaluate local spatial autocorrelation,
thereby aiding in the identification of spatial clusters inherent within the dataset. The
resultant output yields a Z score, wherein elevated values indicate the presence of hotspots
or clusters. Positive and substantial Z scores denote statistically significant hotspots,
whereas negative and lesser scores delineate cold spots. The Getis—Ord Gi* analysis is
being utilized to identify villages with high risks of anthrax incidence for further analysis
and modelling. A total of 1242 villages were identified as hotspots and are represented
in Figure 3, and most of these villages were located in the central and southern districts
of Karnataka.
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Figure 3. Hotspot map of anthrax in Karnataka identified through spatial autocorrelation.

3.4. Analysis of Space-Time Cluster

Disease clusters were identified at the village level, with high disease incidences
represented by red dots encircled by substantial red circles. In contrast, villages with low
disease incidence disease clusters are depicted by blue dots within blue circles (Figure S1).
A total of 15 significant clusters were identified within the time frame from 1 January
2000 to 31 December 2023; among these, 10 clusters (1-7, 9, 10, and 15) showed a high
disease incidence comprising 275 villages and with a high relative risk (4.11-73.90) and
LLR (9.94-57.64). A total of 5 clusters (8, 11-14) covering 13 locations were identified
as low disease incidence clusters with relatively lower relative risk (0.06-0.15) and LLR
(10.88-13.70) (Table 2; Figure S1).

Table 2. Spatiotemporal clusters identified for anthrax through SaTScan.

Time Frame

i Longitude ~ Radius Value
Cluster Latitude g (km) From To (@) E O/E RR LLR P
1 13.42 77.53 31.89 1 January 2000 31 December 2016 ~ 81.00 19.87 4.08  4.82 57.64 0.001
2 13.27 77.82 34.67 1 January 2003 31 December 2019  76.00 18.69 4.07 475  53.62 0.001
3 13.59 77.84 33.99 1 January 2003 31 December 2016 ~ 68.00 1885 3.61 411 41.24 0.001
4 12.24 76.57 159.94 1 January 2001 31 December 2019  58.00 15.02 3.86 432 3775 0.001
5 14.04 76.02 45.55 1 January 2001 31 December 2017  38.00 8.05 472 509 30.15 0.001
6 13.98 75.22 67.42 1 January 2000 31 December 2018  32.00 7.18 446 474 2376 0.001
7 14.82 76.25 52.98 1 January 2017 31 December 2017 1200 128 939  9.64 16.29 0.001
8 15.86 76.05 0.00 1 January 2020 31 December 2021 1.00 1722 0.06 0.06 13.70 0.004
9 14.53 75.85 11.20 1 January 2017 31 December 2017 400  0.06 6323 63.83 12.67 0.005
10 14.67 75.77 7.51 1 January 2017 31 December 2017 500  0.18 28.03 2836 11.87 0.009
11 13.92 76.92 7.47 1 January 2016 31 December 2018  2.00 1772 011 011 11.66 0.01
12 14.13 76.83 20.50 1 January 2008 31 December 2018 ~ 1.00 1498 0.07 0.07 11.51 0.01
13 15.42 76.81 5.78 1 January 2014 31 December 2015  3.00 19.68 015 015 11.38 0.011
14 13.96 76.75 11.44 1 January 2018 31 December 2018 1.00 1433 0.07 007 10.88 0.019
15 15.21 76.76 0.00 1 January 2003 31 December 2015  3.00  0.04 7338 7390 9.94 0.046

O: observed cases, E: expected cases, O/E: observed/expected incidences, RR: relative risk, and LLR: log-

likelihood ratio.
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3.5. Significant Risk Factors Identified through LDA

The statistical analysis, particularly focusing on variables with a p value of 0.05 or
lower, revealed significant correlations with disease occurrence, thus underscoring their
potential impact on disease dynamics. Through rigorous linear discriminant analysis,
several risk variables were identified as having substantial associations with anthrax
disease incidence. Notably, climatic variables such as air temperature, surface pressure,
LST, EVI, and PET; soil parameters such as soil temperature, soil moisture, pH, available
potassium, sulphur, and boron; and geographical parameters such as elevation and distance
from waterbodies and waterways to actual anthrax incidence points emerged as pivotal
predictor variables of anthrax (Table 3). The anthrax incidence points plotted over elevation
indicated that the incidence points were located at elevations > 100 m, and a majority
of them were located at a higher elevation of >500 m (Figure 4A). The distance between
anthrax incidence points and roadways at buffers of 1 km, 5 km, and 10 km revealed
that the majority of points were within buffer zones of 5-10 km, and clusters of anthrax
incidence points were observed in cross-sectional areas of national highways (Figure 4B).
Figure 4C illustrates that the majority of the anthrax incidence points were located along
the waterways. From this, we can conclude that elevation, roadways, and waterways
coupled with significant environmental variables play a crucial role in anthrax occurrence
and spread.

Table 3. Significant predictor variables identified through linear discriminant analysis.

Variables

Air temperature

Potential evaporation rate

Rainfall precipitation rate

Specific humidity
Surface pressure
Wind speed

LST
NDVI
EVI
PET
LAI

Soil temperature
Soil moisture
Soil pH
Organic carbon
Electrical conductivity
Available potassium
Available phosphorous
Available zinc
Available sulphur
Awvailable boron

Elevation
Road ways
Waterbodies
Waterways

Mean Min Max SD F-Value 95% CI p-Value
Meteorological parameters
24.16 18.70 5. .06 5.11 24.01-24.31 0.024
237.27 81.06 503.32 81.62 0.81 233.28-241.26 0.37
- - - 3.25 x 1073-3.56 x
0.0000341 806 x 1077 210 x107* 320 x 1075 141 10-5 0.24
0.01 0.00 0.02 0.00 3.03 0.01-0.01 0.08
93,422.48 89,580.16 100,800.28 1863.83 30.70 93,331.31-93,513.64 5.54 x 1078
3.49 1.31 8.25 1.28 0.18 3.42-3.55 0.67
Remote sensing parameters
33.34 22.13 49.85 4.86 11.50 33.10-33.59 0.001
042 0.04 0.86 0.15 2.47 0.41-0.43 0.12
0.28 0.07 0.64 0.10 5.70 0.27-0.28 0.017
1236.65 20.30 3276.50 1197.63 13.55 1178.07-1295.22 2,65 x 1074
0.08 0.01 2.50 0.12 0.01 0.07-0.08 0.93
Soil parameters
298.20 293.00 307.39 2.81 15.72 298.06-298.33 8.72 x 1075
24.99 8.78 39.94 6.82 12.84 24.65-25.32 3.82 x 1074
7.40 4.90 9.90 0.92 3153 7.35-7.44 3.73 x 1078
0.52 0.10 1.32 0.24 1.58 0.51-0.53 0.21
0.29 0.07 14.70 1.06 0.02 0.24-0.34 0.88
133.52 18.00 653.00 90.75 106.32 129.09-137.96 323 x 1072
9.61 0.20 92.00 13.39 3.00 8.96-10.27 0.08
15.10 1.20 256.60 24.63 26.94 13.89-16.30 0.70
0.68 0.20 4.80 0.44 0.15 0.66-0.70 3.38 x 1077
0.73 0.06 2.40 0.45 12.26 0.71-0.76 0.001
Geographical parameters
614.80 —1.00 1810.00 5304.33 23.61 5296.38-5312.28 1.71 x 107°
13,927.74 9.00 113,867.00 16,235.13 0.15 13,133.66-14,721.83 0.70
2079.39 0.00 10,171.00 2119.20 3.77 1975.74-2183.05 0.05
3379.35 14.00 13,873.00 2892.72 18.35 3237.87-3520.84 232 x 1075

Min: minimum, Max: maximum, SD: standard deviation, CI: confidence intervals.
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Figure 4. The map depicting anthrax incidence points plotted over (A) Elevation, (B) Roadways, and
(C) Waterways.

3.6. Anthrax Risk Assessment and Estimation through Machine Learning

This research utilized climate-disease modelling to analyze significant environmental
risk factors identified through LDA. Figure S2 visually displays the distribution pattern
of anthrax-affected (case) and unaffected (control) regions, wherein red circles indicate
areas with disease incidences and blue dots indicate regions without reported cases. Subse-
quently, case—control data, along with identified significant environmental variables, were
fit through various machine learning models. The RF model proved superior performance
with the Kappa (0.68), ROC (1.00), TSS (0.98), AUC (1.00), accuracy (0.99), precision (0.98),
sensitivity (1.00), specificity (0.93), F1 score (0.99), LOGLOSS (0.12), error rate (0.01), and
Gini coefficient (1.00), followed by CT model with Kappa (0.62), ROC (0.92), TSS (0.73),
AUC (0.92), accuracy (0.86), precision (0.93), sensitivity (0.91), specificity (0.71), F1 score
(0.92), LOGLOSS (0.27), error rate (0.14), and Gini coefficient (0.89). These two models
emerged as highly accurate predictors that met stringent evaluation criteria and were
considered for the ensemble approach (Table 4). To enhance confidence in the predictive
outcomes, an innovative ensemble approach was employed by averaging the scores of the
RF and CT models. This technique refined the prediction accuracy, enabling the delineation
of anthrax risk within the study area. The combined prediction outcomes of several models
were used in the current study, which are in the scale of 0 to 1 viz. (i) 0.01-0.20 = Very low
risk, (ii) 0.21-0.40 = Low risk, (iii) 0.41-0.60 = Medium risk, (iv) 0.61-0.80 = High risk, and
(v) 0.81-1.00 = Very high risk. The resulting risk map indicates that most of the villages in
Bengaluru Rural, Chikkaballapura, Kolar, Ramnagara, Mandya, Mysuru, Chamrajnagara,
Chikmagaluru, Kodagu, Hassan, and Davanagere in the southern and central regions and
Koppal, Raichur, Bellary, and parts of Bagalkot, Gulbarga, and Bidar in the northern region
of Karnataka are at medium to very high risk of anthrax occurrence (Figure 5).
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Table 4. Evaluation matrices of machine learning models employed in this study for anthrax risk

prediction.
Models Kappa ROC TSS AUC Accuracy Precision Sensitivity Specificity gfi =~ FOs. EBoer Cini
GLM 035 084 051 084 076 0.85 0.96 0.41 091 036 024 0.69
GAM 035 084 051 084 076 0.85 0.96 0.41 091 036 024 0.69
RF 068 100 098 100 099 0.98 1.00 0.93 099 012 001 1.00
GBM 046 095 079 095  0.90 0.92 0.99 0.68 095 025 010 0.90
NNET 000 050 000 050 022 0.50 0.00 0.00 100 507 078 1.00
MARS 043 092 067 092 084 0.89 0.97 0.59 093 029 016 0.83
FDA  -001 050 000 050 078 0.78 1.00 0.00 088 764 022 0.99
CT 062 092 073 092 086 0.93 0.91 0.71 092 027 014 0.89
SVM 054 089 072 089 088 0.86 1.00 0.41 092 077 012 0.78
NB  -035 085 —009 085 020 0.11 0.01 0.79 001 703 080 —0.70
ADA 079 087 075 087 093 0.94 0.98 0.76 096 228 007 0.99

The GLM, generalized linear model; GAM, generalized additive model; RF, random forest; GBM, gradient
boosting machine; NNET, artificial neural network; MARS, multiple adaptive regression splines; FDA, flexible
discriminant analysis; CT, classification tree analysis; SVM, support vector machine; NB, naive Bayes; ADA,
adaptive boosting; ROC, receiving operating characteristic curve; TSS, true skill statistics; AUC, area under the
ROC curve; LOGLOSS, logistic loss.

Village level
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001~ 0.20 (Very low risk)
021~ 0.40 (Low risk)
041 0.60 (Medium risk)
I 0.61 - 0.80 (High risk)
I 081 1 (Very high risk)
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Figure 5. Predicted village-level risk map of anthrax in Karnataka showing variations in color,
ranging from yellow (low risk) to red (high risk).

3.7. Transmission Dynamics

Following the risk mapping, the basic reproduction number (Ro) was computed. Ro
values exceeding 1.00 indicate regions or districts experiencing an upwards trend in disease
incidence, while values below 1.00 suggest a decline in anthrax incidence in those regions.
The village level Ro was estimated to range from 0.75 to 2.10, and a total of 245 villages were
identified with Ro values > 1.00. The district-level mean Ro was worked out, and the lowest
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mean Ro was observed in Gulbarga (0.76) and the highest in Davanagere (2.25). A total of
20 districts were identified with mean Ro > 1.00, of which 11 districts were estimated to be
at higher risk, with mean Ro > 1.50 (Table S1). The analysis highlights the areas at risk for
anthrax transmission, offering valuable insights for implementing targeted surveillance
and intervention strategies in these high-risk regions.

3.8. Herd Immunity Threshold

Herd immunity threshold (HIT) levels for anthrax in regions with an Ry greater
than 1.00 were estimated to range from 11.24% in Kolar to 55.47% in Davanagere. These
HIT values represent the percentage of the animal population that must be immune to
prevent the spread of anthrax among livestock. For instance, in Davanagere, an HIT of
55.47% means that 55.47% of the total livestock population needs to be immune to stop the
transmission of anthrax (Table S1). However, controlling anthrax in developing countries
like India faces significant challenges, including inadequate vaccination coverage, limited
financial resources, and insufficient infrastructure, all of which hinder the development of
herd immunity [75]. Achieving HIT levels through vaccination is crucial to controlling the
spread of infection and preventing the incidence of livestock disease.

3.9. Vaccination Coverage

The vaccination coverage required for anthrax disease at different vaccine efficacy
levels is depicted in Figure 6 and Table S1. This study considered three scenarios with
vaccine efficacy levels of 70%, 80%, and 90%, as the exact efficacy or effectiveness of the
anthrax livestock disease vaccine was not definitively known. The necessary vaccination
coverage population in districts with Ro > 1.00 ranges from 16.06-79.24%, 14.05-69.34%,
and 12.49-61.63% of the total livestock population at 70%, 80%, and 90% of vaccine efficacy
levels, respectively (Table S1). The level of vaccination coverage needed is influenced by
vaccine efficacy, which denotes the extent to which vaccinated animals become immune to
anthrax disease, thereby limiting further spread or secondary infections. Vaccine efficacy
is influenced by various factors, such as type of vaccine, timing of vaccination, duration
of immunity, and vaccination program administered to the animals. Generally, greater
vaccination coverage is required when vaccine efficacy is lower, as these two factors are
inversely related (Figure 6).
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Figure 6. Assessment of vaccination coverage at different vaccine efficacy levels.

3.10. The Vaccine Supply and Demand Trend in Karnataka

Figure 7 depicts the yearly provision of anthrax vaccinations in Karnataka from 2008
to 2022, revealing a swift increase from 2014. The highest supply of anthrax vaccine
was recorded in 2016 and 2020, indicating a notable escalation in immunization efforts.
However, compared to previous years, 2022 saw a significant decline, suggesting shifts in
vaccination strategies or challenges in the supply chain.
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Figure 7. Vaccination supply trend in Karnataka (2008-2022).

In the ongoing vaccination campaign across various districts of Karnataka, substantial
disparities in vaccine supply and demand have been noted. For instance, districts such as
Bengaluru Urban, Bengaluru Rural, Chikkaballapura, Chitradurga Davanagere, Dharawad,
Haveri, Kolar, Koppal, Mandya, Mysuru, Raichur, and Tumkur have received vaccines
covering only a small percentage of the total livestock population, while the demand stands
significantly higher as per herd immunity threshold level required, indicating an inadequate
supply of vaccines to meet the local demand. Conversely, Bellary received relatively ample
vaccine supplies compared to their requirements, suggesting potentially better vaccination
coverage in this area. Some districts, such as Bagalkot, Bidar, Chamrajnagara, Kodagu,
Shimoga, and Uttara Kannada, received no vaccines despite their requirements (Figure 8).
However, this discrepancy in supply leads to an uneven distribution of vaccines and
indicates inefficient resource allocation. Therefore, the estimated herd immunity threshold
and vaccination coverage rates at different levels of vaccine efficacy in the present study
will guide stakeholders or authorities in strategizing resource allocation for anthrax control.
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Figure 8. Differences in vaccines supplied vs. vaccines required to achieve herd immunity thresholds
in high-risk anthrax districts in Karnataka.
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4. Discussion

Anthrax is an endemic and widespread disease in Karnataka; therefore, there is a need
to adopt practical strategies for identifying and prioritizing areas for control measures. The
basic measures adopted by most countries for controlling anthrax have included regular
vaccination, raising public awareness, and enforcing rigorous quarantine measures [76,77].
One of the vital methods for reducing the susceptibility of livestock to anthrax infection is
vaccination. It is through anthrax vaccines that authorities intend to establish immunity
in livestock populations against anthrax, thereby reducing the likelihood of transmission
and outbreak of the disease. To achieve optimal vaccination coverage is often a logisti-
cally and operationally difficult task when dealing with large geographic areas and huge
livestock populations.

In this respect, the present study underscores the role of environmental factors as a
key tool for monitoring anthrax incidence. Traditionally, disease prediction research has
predominantly relied on conventional statistical models, each exhibiting varying degrees
of predictive accuracy [78-80]. However, our study highlights the pivotal role of climate
and environmental factors in shaping the geographic dispersion of anthrax through the
utilization of machine learning techniques. This, in turn, facilitates the identification of
anthrax hotspot areas and informs decision-making to implement vaccination strategies and
the estimation of herd immunity thresholds alongside the requisite vaccination coverage
across varying levels of vaccine efficacy.

A systematic review on the spatiotemporal distribution and risk mapping of human
anthrax has been conducted in which the authors reflected on conducting similar studies
for livestock anthrax [41]. Some of the earlier studies have attempted to address this, but
generally with limited datasets. Hence, in contrast to those, the present study depended on a
large dataset from 2000 to 2023 for analyzing the spatiotemporal distribution, risk mapping,
and vaccination coverage of livestock anthrax. This endeavor is useful in surveillance
planning, and the findings warrant enhanced surveillance for livestock anthrax and focused
vaccination in areas under high risk.

In this study, spatiotemporal analysis has shown that, from the year 2000 to 2023,
there are dynamic patterns of anthrax incidence across different regions in the state of
Karnataka. This allows for identification of geographical regions and time periods at
increased risk by applying spatial analysis techniques such as hotspot identification and
cluster analysis. While the prevalence of anthrax is there throughout Karnataka, it is still
evident from our spatial distribution map, hotspot map, and space-time cluster analysis
map that more endemicity is in the southern, central, and uppermost northern regions.
This might be attributed to the warm, humid climate and alkaline soil conditions, which
would favor spore survival and germination [2,77,81,82]. B. anthracis, being an extracellular
pathogen, replicates rapidly in the blood and causes disease. Temporally, the year 2016
recorded remarkable anthrax incidences compared to the rest of the years, with June to
September showing a high number of incidences, highlighting the need for increased
vigilance and specific time-oriented interventions in order to curb the risks of anthrax
outbreaks [5,77,81]. Furthermore, the integration of environmental risk factors, including
climate and soil conditions, enhances understanding of anthrax transmission dynamics.
Statistical analyses revealed significant associations between environmental variables and
anthrax occurrence, with key predictor variables identified as air temperature, surface
pressure, LST, EVI, and PET, soil parameters such as soil temperature, soil moisture, pH,
available potassium, sulphur, and boron, and geophysical parameters such as elevation
and distance from waterbodies and waterways to actual anthrax incidence points. These
findings align with literature suggesting high anthrax incidence during dry and warm
periods following intensive precipitation [5]. Our findings corroborate earlier reports in-
dicating LST as a significant factor linked to anthrax incidence, with higher occurrences
observed during the monsoon months of August, September, and October [78]. Addition-
ally, a study highlighted air temperature and potential evaporation rate as potential risk
indicators during El Nifio years, while during La Nifia years, air temperature, EVI, NDVI,
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specific humidity, and wind speed emerged as significant contributors to anthrax disease
in Karnataka [36]. Soil pH, organic carbon, calcium, potassium, and zinc concentrations
are believed to correlate with spore survival, while precipitation and wind speed aid in
spore spread [2,81]. Animal contact with spores occurs through grazing grass close to
the surface during low or scarce grass periods or by herds moving to restricted /endemic
areas during water scarcity, increasing the likelihood of anthrax outbreaks [13,18]. These
insights underscore the complex interplay between climatic variables and anthrax dynam-
ics, emphasizing the need for nuanced surveillance and intervention strategies tailored to
prevailing environmental conditions.

It has been evidenced in past years that machine learning models perform better than
other statistical approaches for modelling areas [83,84]. In the present study, machine
learning models RF and CT have shown robust predictive accuracy in unveiling intricate
relationships between climatic variables and anthrax incidence. The ensemble approach,
which averages scores from these models, further refines prediction accuracy and can be
used to construct high-resolution risk maps. Our risk map, derived from the analysis, shows
that anthrax is most likely to spread in the southern, central, and uppermost northern parts
of Karnataka. These areas show heightened susceptibility to anthrax incidence, probably
due to the suitable environment present in these regions, including warm and humid
climates and alkaline soil, which would support the survival and germination of anthrax
spores [2,13,36,81]. Other risk factors that might contribute to the raised risk noted in these
regions include land use patterns, animal husbandry practices, and historical incidence
of anthrax. These findings are consistent with several studies that have utilized similar
machine learning approaches for predicting anthrax risk maps based on environmental
variables in various regions, including Karnataka [36,37], India [81], Zimbabwe [13], North
America [85], the Amhara regional state of Ethiopia [86], and the West African nation of
Ghana [87].

The predicted risk maps, coupled with estimates of the basic reproduction number (Ro),
provide actionable insight into targeted control measures for this disease. By identifying
districts at elevated risk and estimating vaccination coverage necessary for effective disease
control, authorities can prioritize resources and implement timely interventions in high-risk
areas. Studies have documented that regular vaccination of ruminants in the endemic area
of anthrax reduces the basic reproduction number of B. anthracis infection in Karnataka,
India [36,37,88]. Inconsistency in vaccination administered and required can be the cause
of a serious outbreak in areas that receive less vaccination than required. Hence, proactive
vaccination campaigns among livestock in identified high-risk regions, as brought out by
the present study, call for immediate attention towards policy and program. The anthrax
incidence has been on a declining trend since 2016 (Figure 2A), which indicates that efforts
undertaken by various vaccination programs in Karnataka are bearing fruits [88,89] and
is consistent with the present study. The decline in anthrax vaccinations in 2022 may
be primarily attributed to changes in vaccination. Karnataka follows a five-year ring
vaccination program, covering a 5-km radius around endemic/outbreak villages [16]. As
shown in Figure 2A, anthrax cases peaked in 2016, leading to intensive vaccination efforts
until 2021 for a 5 year duration, as depicted in Figure 7. This reduced the need for large-
scale vaccinations in 2022, which coincided with the overall decline in anthrax cases in
the state in 2022 (Figure 2A). Furthermore, supply chain disruptions, particularly due to
the COVID-19 pandemic, may have caused vaccine shortages or delays or misconceptions
about vaccines, contributing to the lower vaccination numbers that year.

The efficacy of the vaccine typically varies depending on the type of vaccine, the strain
used, and whether it is being administered to animals or humans [88]. It is important to
note that if livestock are consuming feed containing antibiotics or are being treated with
antibiotics individually, this can potentially render the vaccine ineffective [90]. The Food
and Drug Administration (FDA) mandates controlled clinical trials and field studies to
demonstrate vaccine efficacy. However, assessing the effectiveness of the anthrax vaccine
presents challenges, as cases of inhalational anthrax are rare, even in regions where the
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disease is known to occur. Due to the infrequency of natural exposure, it is difficult to rely
on real-world cases to evaluate the vaccine’s effectiveness [91]. The overall effectiveness
of the anthrax vaccine in humans has been found to be approximately 92.5 percent [91].
However, due to variations in vaccine efficacy, the current study assessed vaccination
coverage in animals at efficacy levels of 70%, 80%, and 90%. This vaccination coverage
assessment helps to measure immunization levels, identify areas with low vaccination
rates, and improve public health strategies.

There exist several strengths found in this study. First, we embedded a vast dataset
spanning from 2000 to 2023, hence sweeping through all major trends in the incidence
of anthrax within Karnataka. Furthermore, we validated the risk map using spatially
independent data, which provided further strengthening of the analysis. Indeed, model
evaluation is key, particularly for mapping to inform surveillance and activities related
to the management of disease. Second, we estimated the requirements of herd immunity
threshold and vaccination coverage under different levels of efficacy in high-risk regions of
anthrax. Our study findings open up possibilities for reducing the spread and endemicity of
anthrax in Karnataka. There are, however, some limitations to the study. Under-reporting
and non-reporting of cases of anthrax during the period of study in Karnataka may modify
the estimated basic reproduction number and in turn alter the herd immunity threshold
and vaccination coverage required for a certain level of vaccine efficacy. Nevertheless, our
estimate of vaccination coverage gives forewarning about the optimum population to be
covered under vaccination, even in conditions of under-reporting or non-reporting. This
study has therefore appreciably advanced the understanding of anthrax and identified
the role of interdisciplinary approaches in understanding and managing this zoonotic
disease. Spatial, temporal, and environmental data are combined with advanced analytical
techniques in this contribution, putting forward an integrated framework for assessing an-
thrax risk and guiding evidence-based decision-making and vaccine coverage and resource
allocation in disease control efforts.

5. Conclusions

This research underscores the crucial role of spatiotemporal analysis and environmen-
tal factors in monitoring anthrax outbreaks, emphasizing the need for targeted vaccination
strategies in Karnataka. By integrating GIS with meteorological data, remote sensing, soil,
and geophysical parameters, we have correlated these factors with anthrax occurrence to
create detailed predictive risk maps. These maps help estimate key epidemiological metrics
such as the basic reproduction number (Ro), herd immunity thresholds, and required
vaccination coverage at various efficacy levels. The risk maps and projections serve as
essential tools for optimizing resource allocation, particularly vaccine distribution. Addi-
tionally, they provide critical insights into potential future behavior, enabling informed
planning and evaluation of strategies. Early findings from this study can be leveraged by
policymakers, veterinarians, and farmers to implement necessary public health measures
to control anthrax spread. The estimates of herd immunity and vaccination coverage for
high-risk areas, as identified in this study, will be pivotal in guiding policy decisions. These
findings support the strategic allocation of resources for comprehensive disease surveil-
lance, ensuring a steady supply of anthrax vaccines and promoting regular training for
veterinarians and farmers. Moreover, this study emphasizes the importance of developing
a robust early warning system and rapid response mechanisms using Al and machine
learning tools to address gaps in public health efforts. Ultimately, this approach aims to
reduce the risk of anthrax outbreaks and strengthen preventive measures.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/vaccines12091081/s1, Table S1: District-wise estimated basic
reproduction number, herd immunity threshold and vaccination coverage requirement at different
vaccine efficacy levels. Figure S1: Space time clusters of anthrax in Karnataka. Figure S2: Anthrax
attacks case-control data are depicted on a map of Karnataka. (A) Case data: red-colored circles denote
locations where anthrax has been reported, (B) Control data: blue-colored dots denote locations
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where anthrax has not been reported, and (C) Case-control data: displays both the existence and
absence of anthrax incidence.
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