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A B S T R A C T

The comprehensive analysis of forest fires in India from 2005 to 2022 underscores the urgent need for national-
scale management and conservation efforts. Using kriging techniques, significant hotspots were identified,
revealing a substantial increase in forest fire incidents in Mizoram by 2022, averaging 2614.78 ± 1519.36 oc-
currences. The study highlights the direct influence of climate conditions on forest fire occurrences, with sig-
nificant positive correlations found with average and maximum temperatures. Furthermore, the impact of forest
fires on anthrax dynamics in Orissa, Jharkhand, and Andhra Pradesh was examined, illustrating the ecological
disruptions’ implications for livestock and public health. This study advocates for interdisciplinary collaboration
and tailored strategies to proactively manage forest fires, safeguard biodiversity, and ensure community well-
being.

1. Introduction

India possesses merely one per cent of the global primary forests,
characterized as native, natural and undisturbed forest ecosystems
devoid of human activities. The escalation of anthropogenic activities
worldwide, including agriculture, urbanization, and industrialization,
driven by the burgeoning global population, poses a significant threat to
both primary and secondary forest ecosystems (Parashar and Biswas,
2003; Cobb and Metz, 2017). Among the myriad of challenges faced by
forest ecosystems, forest fires stand out, with a noticeable increase in
frequency and intensity globally (Robinne et al., 2018), affecting around
(1 %) of all forested areas annually. Fires affect forest ecosystems in two
ways: high-intensity fire disturbances severely harm the equilibrium of
forest ecosystems and cause the degradation of forest ecosystems; low-
intensity fires help prevent major fires, preserve biodiversity, and pro-
mote natural regeneration (Liu et al., 2024).

1.1. Climate change and forest fires

The relationship between climate and forest fires has garnered
attention within the scientific community, categorizing studies into two
regimes: fuel-limited and flammability-limited. These regimes highlight
the critical role of climatic conditions in preconditioning fuels in the

months to years preceding the fire season. Global warming is anticipated
to alter temperature and precipitation patterns worldwide, with climate
and fire scientists predicting an increase in wildfire activity as the planet
warms (Abatzoglou and Kolden, 2013). The impacts of climate change
on wildfires are expected to become more severe, driven by the fre-
quency of extreme weather events (Keith et al., 2009). These climate
changes have the potential to significantly affect wildfire frequency,
size, and intensity, leading to higher fire risks, longer fire seasons, and
more severe consequences. The resulting hazards and vulnerabilities
include microclimate alteration, floods, infrastructure destruction,
economic losses, and human casualties. Post-wildfire conditions may
accelerate other environmental disturbances, causing modified vegeta-
tion patterns, land degradation, desertification, and disruptions in the
hydrological cycle. Even seemingly small climate changes can trigger
catastrophic shifts in ecosystems when human exploitation compromises
their resilience (SCBD, 2001; Forbes et al., 2011). Furthermore, carbon
emissions and other greenhouse gases from wildfires create feedback
loops on the climate, forming a cycle where more fires lead to increased
emissions, creating conditions conducive to further wildfires (Abatzo-
glou and Kolden, 2013).
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1.2. Indian forests

India’s remarkable biodiversity, covering over one-fifth of its terri-
tory, is home to approximately 173,000 forest villages inhabited mainly
by tribal communities, that rely heavily on forest resources for suste-
nance (Kishwan et al., 2009). These communities significantly
contribute to government revenue through the extraction of minor forest
products, emphasizing the delicate balance between human livelihoods
and sustainable forest use. The classification of dense, moderately dense,
and open forest types, outlined by the Food and Agriculture Organiza-
tion and the United Nations Framework Convention on Climate Change,
relies on criteria such as canopy cover and tree height. According to the
Forest Survey of India (FSI) 2021 report, India’s total forest and tree
cover stands at 80.9 million hectares, accounting for 24.62 per cent of
the country’s geographical area, showing an increase of 2,261 sq. km
compared to 2019. This represents a two per cent contribution to the
global forested area and one per cent to global primary forests. The
country’s forests, diverse in nature, comprise 18 distinct types grouped
into five major categories based on dominant vegetation, including
tropical evergreen, tropical deciduous, tropical thorn, montane, and
swamp forests, as outlined by the FAO in 2015.

1.3. Forest fires in India

Forest fires in India are a pressing concern, particularly in regions
like Madhya Pradesh, Odisha, and Chhattisgarh, where dry deciduous
forests are prevalent. These fires, occurring mainly in April and May, are
fueled by substantial vegetation and reduced soil moisture. Traditional
practices like Jhumming contribute to forest fires in northeastern India.
Satellite data is crucial due to limited statistical information on fire in-
cidents. Human activities cause around 90 per cent of forest fires in
India, necessitating robust prevention strategies. Forest fires are classi-
fied into natural and human factors, with understanding these factors
vital for mitigation. Dry deciduous broadleaved forests are especially
susceptible, notably during dry pre-monsoon periods. MODIS data re-
veals concentrated fire events in central and east-central India, while
Chir Pine forests in the Himalayas are also vulnerable (Chandra and
Kumar Bhardwaj, 2015; Puri et al., 2011; Roy, 2003; Kale et al., 2017;
Jaiswal et al., 2002; Sannigrahi et al., 2020; Joseph et al., 2009). Recent
literature underscores the significant impact of climate change on forest
fire dynamics. Mina et al. (2023) highlight the interaction between cli-
matic factors and fire intensity in the central Himalayas, while Yashwant
(2023) links the surge in forest fires to climate change, affecting biodi-
versity and carbon emissions. Mohanty and Mithal (2022) report a ten-
fold increase in fire incidents over the past two decades, emphasizing the
need for improved management practices. Barik and Baidya Roy (2023)
project significant changes in fire weather regimes due to climate vari-
ations, and Sewak et al. (2022) review the increasing frequency and
intensity of fires, detailing contributing climatic factors and socio-
economic impacts. These insights provide a comprehensive under-
standing of the interplay between forest fires and climate change.

1.4. Forest fire points

“Forest fire points” are specific locations where forest fires have been
detected or are actively burning, playing a crucial role in environmental
conservation, disaster management, and public safety in India. The In-
dian landscape, rich in forest cover and biodiversity, is prone to recur-
rent forest fires due to various factors such as changing climatic patterns
and human activities. Understanding these dynamics is essential for
timely response, resource allocation, and policymaking. Kumar et al.
(2019) used GIS analysis to classify forest areas based on their suscep-
tibility to fires, identifying categories from extremely fire-prone to less
fire-prone. The Forest Survey of India (FSI) 2021 reports that about
10.66 per cent of India’s forest cover is in extremely to very highly fire-
prone zones, with states like Mizoram, Tripura, Meghalaya, and

Manipur showing the highest fire tendencies. Approximately 65 per cent
of India’s deciduous forests are susceptible to fires, resulting in an
annual economic loss of around $104 million (Ashutosh et al., 2019).
India aims to increase its forest cover to 33 per cent by 2030, as outlined
in its Intended Nationally Determined Contributions (INDC) plan.
However, the rising frequency of forest fires poses a potential impedi-
ment to these goals, highlighting the urgent need for comprehensive and
sustainable fire management strategies (Dogra et al., 2018).

1.5. Flame ignition factors

While numerous studies in developed countries have explored the
relationship between forest fires and environmental parameters, our
research addresses a significant gap by providing a detailed analysis of
forest fire regimes in India using 18 years of data. We integrate data from
the Forest Survey of India (FSI) spanning from 2005 to 2022 with
meteorological factors such as minimum temperature (Tmin), maximum
temperature (Tmax), average temperature (Tav), relative humidity
(RH), wind speed (WS), Normalized Difference Vegetation Index
(NDVI), elevation, and population density. These data are sourced from
reputable agencies like the Climatic Research Unit (CRU), the National
Oceanic and Atmospheric Administration (NOAA), and the Moderate
Resolution Imaging Spectroradiometer (MODIS). Utilizing Geographic
Information System (GIS) methodologies with spatial resolutions
ranging from 0.25◦ x 0.25◦ to 2.0◦ x 2.0◦, our approach provides a
comprehensive analysis of forest fire dynamics. The insights gained are
intended to support evidence-based policy decisions for effective forest
fire management.

1.6. Anthrax and forest fire points

Anthrax, a zoonotic disease with persistent global health threats, is
caused by Bacillus anthracis, a resilient, soil-borne bacterium. Surviving
for extended periods under favourable conditions, B. anthracis infects
hosts rapidly, particularly when soil pH and concentrations of organic
calcium, potassium, and zinc are conducive. Grazing animals inadver-
tently encounter spores when grazing close to the soil surface or
congregating in limited areas during water scarcity (Sushma et al., 2021;
Suresh et al., 2022). Spores, resilient to extreme environmental condi-
tions, persist despite heat, cold, desiccation, chemicals, and irradiation,
with anthrax incidence varying by soil type and climate (Suresh et al.,
2023). Our study investigates the intertwined relationship between
anthrax outbreaks and forest fires, recognizing their potential inter-
connectedness. By exploring how forest fires can indirectly influence
anthrax dynamics through habitat disruption and altered wildlife
behaviour, we aim to better understand the complex interplay between
ecological disturbances and disease dynamics.

The primary objectives of this study are to identify forest fire hot-
spots across districts in India at a national scale, analyze their spatial
variations using Kriging interpolation techniques, and investigate the
relationship between forest fires and various fire-related indices through
statistical methods such as Kendall’s tau (τ) test and Bland-Altman
Analysis. Additionally, the study aims to explore the impact of forest
fires on anthrax occurrences in Jharkhand, Orissa, and Andhra Pra-
desh—states with the highest frequency of anthrax attacks. By accom-
plishing these objectives, the study aims to provide an integrated
assessment of forest fires and climate in India.

2. Material and methods

2.1. Study area

The study covers India, extending 3,287,263 km2 between latitudes
6◦ 44′N and 35◦ 30′N, and longitudes 68◦ 07′E and 97◦ 25′E.With forest
cover comprising 24.62 % of its land area, as defined by the Forest
Survey of India (FSI) with a canopy density exceeding 10 %, India’s
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forests are predominantly tropical dry and moist deciduous, covering 68
% of the total forested area (Champion and Seth, 1968; Reddy et al.,
2015).

The study examines forest coverage and historical fire hotspots
across India (Fig. 1). Fig. 1 presents fire data aggregated at the district
level, which enhances the analysis of fire patterns about meteorological
and climatic factors by detailing how fire occurrences vary across
different environmental conditions.

2.2. Forest fire points trends in India from 2005 to 2022

Forest fire data from 2005 to 2022 was analyzed by converting
district-level fire events into percentages relative to the total number of
forest fires in India, with 100 % representing the national baseline. This
approach, which examines monthly data from January to June, reveals
the temporal and spatial patterns of forest fires. The study covered 36
states and 732 districts, involving the creation of a comprehensive
dataset and applying spatial analysis techniques, including variogram

modelling, to assess distribution and clustering.
Fig. 2 illustrates a marked increase in forest fire events over the

period. Beginning with 8,430 fires in 2005, the number fluctuated but
exhibited an overall upward trend. Significant peaks occurred in 2010,
2012, 2017, 2019, 2021, and 2022, with the highest recorded at
104,500 events in 2021. This upward trajectory highlights a growing
incidence of forest fires, underscoring the need for enhanced forest
management and fire prevention strategies.

2.3. Data collection, sources, pre-processing and analysis

We utilized forest fire count datasets from 2005 to 2022, provided by
the Forest Survey of India (FSI), which offers downloadable data. FSI
conducts systematic analyses of forest fire events across India using data
from the Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite system, in collaboration with NASA and the University of
Maryland’s Geography Department. The MODIS-based active fire points
are refined by FSI to exclude non-forest areas using existing forest cover

Fig. 1. Map illustrating forest coverage and historical hotspots of forest fires across India.
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information. We acquired the geographical coordinates (latitude and
longitude) of fire incidents in MS Excel format from the FSI website,
which were converted into point shape files using ARC/GIS software.
The dates associated with these fire points were extracted into day,
month, and year columns. The study then focused on generating district-
wise forest fire hotspots across India at the national level, identifying
areas with the highest frequency of fires relative to the total number of
forest fire events during the study period.

2.3.1. Kriging
Kriging is a spatial interpolation technique used to estimate variable

values across a continuous area based on sampled data points. In this
study, ordinary kriging, a common method, assumes a constant mean
unless otherwise justified. The procedure involves fitting a variogram to
determine the spatial covariance structure and using this information to
interpolate values for unsampled locations. To address the non-normal
distribution of forest fire count data, a logarithmic transformation is
applied before kriging analysis. This transformation helps the data
approximate a normal distribution, making it more suitable for kriging.
Kriging is particularly useful for analyzing and predicting spatial pat-
terns affected by human activities.

2.3.1.1. Variogram, nugget, sill and range. A variogram is a tool used to
analyze spatial correlation by plotting the semi-variance (gamma-
value), which measures the average squared difference between data
pairs, against the distance or “lag” between them. The “experimental”
variogram represents observed values, while the “theoretical” or
“model” variogram shows the best-fitting distributional model. Key
components of the variogram include the nugget, sill, and range. The
nugget reflects small-scale variability or measurement error, the sill
represents the maximum variability at large distances, and the range
indicates the distance at which spatial correlation diminishes. By fitting
models such as Gaussian, spherical, or exponential to the data, the
variogram helps quantify spatial correlation and select the most
appropriate model using statistical measures like Root Mean Square
Error (RMSE).

Spherical model:

ŷ(h) = C0 + C

[

1.5
h
a
−

(
h
a

)3
]

, if 0 ≤ h ≤ a. (1)

Exponential model:

ŷ(h) = C0 + C
[

1 − exp
{

−
h
a

}]

for h ≥ 0 (2)

Gaussian model:

ŷ(h) = C0 + C

[

1 − exp

{

−
h2

a2

}]

for h ≥ 0 (3)

Where C is sill, a is nugget, h is lag values.
While various statistical methods, such as Root Mean Square Error

(RMSE), least-squares, maximum likelihood, and Bayesian approaches,
can aid in selecting the optimal variogram model, the final choice relies
on user judgment. The best-fitting variogram model was determined
based on RMSE values, which indicate how well the model fits the data.
Different variogram models were assessed for the forest fire points (FFP)
values.

Ordinary kriging was selected for interpolation due to its effective-
ness in producing smooth estimates without needing additional data and
its capacity to provide predictions with associated uncertainty. The
chosen variogram model guided the ordinary kriging process, ensuring
an accurate representation of spatial relationships. The interpolated
results were visualized using shapefiles created in R, while the kriging
calculations were performed in Python with libraries such as Pandas,
NumPy, GeoPandas, and Matplotlib. This approach ensured precise
spatial interpolation of forest fire points.

2.3.2. Environmental features and data engineering
To analyze the correlation between district climatology and forest

fire points in India, we utilized climate data from 2005 to 2022. Forest
fire point (FFP) data, with near real-time monitoring at a 1 km2 reso-
lution, was sourced from the Forest Survey of India and MODIS. Tem-
perature data (minimum, maximum, average) were obtained from the
Climatic Research Unit (CRU) at a 0.5◦ x 0.5◦ resolution. Relative hu-
midity (RH) and wind speed (WS) data were provided by NOAA at a 2.0◦

Fig. 2. Temporal trends in forest fire points (FFP) across India from 2005 to 2022, showing annual variations and patterns.
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x 2.0◦ resolution. The Normalized Difference Vegetation Index (NDVI)
data came from MODIS with a 0.25◦ x 0.25◦ resolution. Elevation data
were retrieved from DIVA-GIS, and population density data were
sourced from Earth Data and the Census of India (Table 1).

Statistical analyses, including correlation tests, will be employed to
quantify relationships between environmental variables and forest fire
points. This approach aims to provide insights into environmental
monitoring and management strategies. Monthly averages of climate
attributes and forest fire events for the study area will be analyzed using
Kendall’s tau (τ) correlation test.

The correlation test aimed to identify significant relationships
(P≤0.05) between climate variables and forest fire incidents. Kendall’s
tau (τ) was calculated using the formula:

τ =

∑
A −

∑
B

∑
A+

∑
B

(4)

A represents concordant pairs, B represents discordant pairs, n is the
number of observations, and Z is the Z-statistic. The Kendall’s tau value
ranges between − 1 and 1, with 0 indicating no relation and 1 repre-
senting a perfect positive relation.

In addition, the significance level (1) was assessed to provide a sta-
tistical measure of the correlation’s strength:

∑
A+

∑
B =

n(n − 1)
2

(5)

Moreover, the Kendall’s tau test statistic (Z) was calculated to evaluate
the deviation of the observed Kendall’s tau from the expected value
under the null hypothesis:

Z =
3*τ*√n(n − 1)

√2(2n+ 5)
(6)

After conducting Kendall’s tau tests, maps were created using ArcGIS
Pro (https://www.esri.com/en-us/arcgis/products/arcgis-pro/) to
visualize population density and elevation of forest fire points. Elevation
data, derived from digital elevation models (DEMs), reveals how terrain
height affects fire behaviour through factors such as slope and drainage.
Population density, especially in northeast India where slash-and-burn
agriculture is common, correlates significantly with forest fire in-
cidents. Increased population growth leads to shorter fallow periods,
heightening fire risk. The analysis included meteorological varia-
bles—minimum, maximum, and average temperatures, relative hu-
midity, wind speed, and Normalized Difference Vegetation Index
(NDVI)—along with elevation and population density. Temperature,
relative humidity, wind speed, and NDVI were found to have the most
significant relationships with forest fires in India.

2.3.3. Spatial cluster analysis
Multi-distance spatial-clustering analysis (Ripley’s K-function), a

well-established method, has found broad application in analysing the
spatial relationship among multiple point patterns. It characterizes the
distribution pattern of landscapes by treating them as points in space,
mapping their distribution and assessing spatial arrangements based on
this map (Guo et al., 2015; Stoyan and Penttinen 2020). In our investi-
gation, Ripley’s K function was employed to evaluate the spatial dis-
tribution of forest fires in India. The Ripley’s K(r) function is defined as:

K(r) = A
∑n

i=1

∑n

j=1

rij(r)
n2

(
i, j = 1,2,⋯, n, i ∕= j, rij ≤ r

)
(7)

where n is the number of fire points; d is the distance scale; rij is the
distance between fire points i and j; and A is the area of the study area.

To make the results more reliable and stable, the square root of K(r)/
π is introduced to correct the function, resulting in the L(r) function with
the following equation.

L(r) =
̅̅̅̅̅̅̅
K(r)

π

√

– r (8).
When L(r) exceeds the expected value, it indicates an aggregated

distribution of fire spots, whereas a value below the expected suggests a
discrete distribution. Statistical significance in spatial aggregation oc-
curs when L(r) surpasses the upper packet traces, while significance in
spatial discreteness arises when L(r) falls below the lower packet traces.

2.3.4. Bland-Altman analysis
For the Bland-Altman analysis of forest fire points in India from 2005

to 2022, data was collected systematically to assess forest fire occur-
rences. Pairwise comparisons were conducted between the following
years: 2005 and 2011, 2012 and 2016, 2017 and 2022, and 2005 and
2022. The analysis involved calculating the mean difference in forest fire
points for each year pair and determining the lower and upper limits of
agreement. Bland-Altman plots were then generated, with the mean
difference on the y-axis and the average number of forest fire points for
each pair on the x-axis. This approach facilitated the assessment of
agreement and variability in forest fire data over the selected years.

2.3.5. Impact of forest fire on anthrax
The analysis of the impact of forest fires on anthrax involved three

key steps: data acquisition, visualization, and spatial analysis. Initially,

Table 1
Thematic layers of factors used and sources of data.

Parameters Data Source Temporal
Resolution

Spatial
Resolution

Forest Fire Points
(FFP)

Forest Survey of India
Near real-time monitoring
of Forest Fire based on
MODIS https://fsiforestfire.
gov.in/index.php

Monthly MODIS (1 km
X 1 km)

Minimum
Temperature
(Tmin)

Climatic Research Unit
(CRU) websitehttps://
crudata.uea.ac.uk/cru/
data/hrg/cru_ts_4.07/
cruts.2304141047.v4.07/

Monthly 0.5◦ x 0.5◦

Maximum
Temperature
(Tmax)

Climatic Research Unit
(CRU) websitehttps://
crudata.uea.ac.uk/cru/
data/hrg/cru_ts_4.07/
cruts.2304141047.v4.07/

Monthly 0.5◦ x 0.5◦

Average
Temperature
(Tav)

Climatic Research Unit
(CRU) websitehttps://
crudata.uea.ac.uk/cru/
data/hrg/cru_ts_4.07/
cruts.2304141047.v4.07/

Monthly 0.5◦ x 0.5◦

Relative
Humidity (RH)

National Oceanic and
Atmospheric
Administration (NOAA)
https://psl.noaa.gov/data/
gridded/data.20thC.html

Monthly 2.0◦ x 2.0◦ −

222 km

Wind Speed (WS) National Oceanic and
Atmospheric
Administration (NOAA)
https://psl.noaa.gov/data/
gridded/data.20thC.html

Monthly 2.0◦ x 2.0◦ −

222 km

Normalized
Difference
Vegetation
Index (NDVI)

MODIS website (https://
ladsweb.modaps.eosdis.
nasa.gov/)

Monthly 0.25◦ x 0.25◦

− 27.75 km

Elevation DIVA-GIS
https://www.diva-gis.org/
Data

− 0.8 km X 0.8
km at the
equator

Population
density

Earth data (https://cmr.
earthdata.nasa.gov/search/
concepts/C1871832077-
SEDAC.html) and Census of
India (https://censusindia.
gov.in/census.website/)

− 1 km X 1 km
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data from 2005 to 2022 was sourced from the OIE, state animal hus-
bandry departments, and NADRES. Trends in “Anthrax attacks,”
“Anthrax outbreaks,” and “Forest fires” were examined using line plots
generated in R. Correlation analysis between forest fire points and
anthrax occurrences was conducted in MS Excel for the states of Orissa,
Jharkhand, and Andhra Pradesh. Kriging interpolation, detailed in
Section 2.3.1, was used to create heat maps showing forest fire hotspots,
while distance plots were developed to illustrate the impact of these
hotspots on anthrax cases. In these plots, circles were drawn around high
and low forest fire points, with black circles indicating high and white
circles indicating low forest fire points. This approach provided a
detailed exploration of the relationship between forest fires and anthrax,
offering valuable insights for public health and wildlife conservation
strategies.

2.4. Tools and software

The study employed ArcGIS 10.3 for spatial analysis and visualiza-
tion, R for statistical and correlation analysis, and Python for data pro-
cessing. These tools collectively enabled a comprehensive examination
of forest fire dynamics and their impact on anthrax outbreaks.

3. Results

3.1. Overall forest fire assessment

From 2005 to 2022, forest fire assessments across Indian states and
Union territories revealed significant spatial and temporal variations.
Madhya Pradesh reported the highest average incidents per year
(3360.17 ± 4631.8), followed by Maharashtra (2543.72 ± 2770.31)
and Odisha (2640.67 ± 2374.78). West Bengal experienced an average
of 190.17 ± 180.56 incidents annually, peaking in 2017. Jharkhand
showed significant variability, averaging 554.5 ± 552.07 incidents,
especially in 2016. Karnataka averaged 704.33 ± 492.93 incidents,
peaking in 2018. Kerala maintained consistent moderate incidents,
averaging 129.17 ± 125.46 annually.

Over the 18-year study period, a total of 524,741 forest fire points
were recorded, highlighting the substantial national impact. Andaman
and Nicobar averaged 10.22 ± 22.36 incidents, indicating occasional
low-impact events. Chandigarh, Daman Diu, and Delhi recorded mini-
mal incidents. Haryana averaged 31.11 ± 45.27 incidents annually,
while states like Chandigarh, Lakshadweep and Puducherry had mini-
mal to zero incidents (Table 2; Fig. 2).

In 2005, the data indicated relatively low fire incidents in several
states. West Bengal had 31 incidents, while Madhya Pradesh, Mahara-
shtra, and Odisha recorded 893, 521, and 1125 incidents, respectively.
Minimal incidents were observed in Andaman and Nicobar, Chandigarh,
Daman and Diu, Delhi, Haryana, Lakshadweep, and Puducherry. By
2022, a marked increase in incidents was evident. Madhya Pradesh
experienced a significant surge, peaking at 18,912 incidents, while
Maharashtra and Odisha also witnessed notable spikes. Mizoram
recorded the highest average incidents (2614.78 ± 1519.36) for the
year. West Bengal saw a substantial rise to 729 incidents. Other states
like Lakshadweep consistently reported minimal to no incidents,
demonstrating regional disparities (Fig. 3) this comprehensive analysis
underscores the heterogeneous nature of forest fire occurrences,
emphasizing the need for region-specific mitigation strategies and
increased awareness.

3.2. Kriging

The geostatistical analysis uncovered valuable insights into the
spatial and temporal dynamics of forest fire points in India. Utilizing
variogram modelling, the spherical model emerged as the optimal fit,
highlighting a distinct range of spatial autocorrelation in forest fire oc-
currences across districts. The successful minimization of Root Mean

Square Error further validated the model’s accuracy, enhancing the
reliability of the findings. Beyond academic contributions, these results
hold practical significance for crafting effective management strategies
and policy interventions, offering a foundational understanding of the
spatial intricacies of forest fire occurrences for future research and tar-
geted mitigation efforts. In our study, we assessed three variogram
models—Spherical, Gaussian, and Exponential—using metrics such as
Partial Sill, Full Sill, Range, Nugget, RMSE, and MSE. The Spherical
model outperformed the others, with a Partial and Full Sill of 0.3966, a
Range of 1.8539, and an exceptionally low Nugget of 5.9744e-10,
indicating its superior ability to capture spatial dependence. With the
lowest RMSE (0.0316) and MSE (0.0010), the Spherical model proved.

to be the most effective in modelling and predicting spatial vari-
ability, making it the preferred choice for our analysis (Table 3).

The kriging results shed light on the diverse spatial patterns of forest
fire incidents across Indian states and Union Territories. Mizoram, a
pronounced hotspot, is predicted to witness a significant number of
forest fire points, aligning with observed high-frequency incidents.
Similarly, states like Maharashtra, Chhattisgarh, and Madhya Pradesh
demonstrate substantial predicted forest fire points, reflecting their
historical prominence in such occurrences. Zooming in at the district
level reveals specific areas of concern, such as Pune and Nagpur in
Maharashtra, Bastar in Chhattisgarh, Hoshangabad and Balaghat in
Madhya Pradesh. The associated numbers underscore the urgency for
targeted mitigation efforts, emphasizing the need for state-specific
strategies in forest fire management. This kriging-based analysis pro-
vides a nuanced perspective, guiding effective interventions at both
state and district levels in addressing the spatial distribution of forest fire
incidents (Fig. 4).

3.3. Environmental attributes and forest fires

Across various Indian districts, meteorological trends depict signifi-
cant patterns over the years. Maximum temperatures have consistently
risen, with an increase observed from 30.19 ◦C in 2005 to 30.45 ◦C in
2022, indicating a warming climate trend.

Similarly, minimum temperatures have also shown a steady increase,
ranging from 18.76 ◦C to 19.10 ◦C over the same period. Wind speeds
exhibit fluctuations without a clear trend, maintaining an average of
around 2.9 to 3.0 m per second throughout the years. Relative humidity
levels have remained relatively stable, hovering around 60 to 65 per
cent over the years. However, the Normalized Difference Vegetation
Index (NDVI) has displayed a positive trend, with values increasing from
0.45 in 2005 to 0.51 in 2022, suggesting improved vegetation health and
coverage. Overall, the data indicates a warming climate with stable
humidity levels and potential vegetation enhancement across Indian
districts (Fig. 5.).

In our extensive analysis spanning from 2005 to 2022, we thoroughly
investigated the relationship between climate attributes and forest fire
incidents in the district of India. Referencing Table 4, we utilized Ken-
dall’s tau (τ) correlation coefficients to examine the connections be-
tween the number of forest fires and crucial climate variables,
specifically maximum temperature, minimum temperature, average
temperature, NDVI, relative humidity and wind speed. and the values
for Tmax, Tmin, Tav, NDVI, RH, WS, and elevation were + 0.4545,
+0.4474, +0.4568, +0.4504, − 0.4497, +0.4523, and + 0.4383,
respectively. Significant positive correlations were evident for Tav (τ =

+0.4568, P≤0.001) and Tmax (τ = +0.4545, P≤0.05). Although cor-
relations were identified for Tmin, NDVI, RH andWS, they did not reach
statistical significance (P>0.05). Elevation showed a highly significant
correlation with forest fire incidents (τ = 0.4383, P≤0.001).

Regression analyses revealed varying degrees of association between
meteorological variables and forest fire points. A statistically significant
relationship was observed between Tmin and forest fire points, with the
model explaining 41.42 % of the variability (multiple R=0.6436). Both
the intercept and Tmin coefficients were significant (p-values< 0.05). In
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Table 2
Number of forest fires per year, from 2005 to 2022, in each state of India, during our review of climate attributes and their effects on forest fire between 2005 and 2022. Total fire incidents per year and average number of
incidents per state (±standard deviation; SD) are also given.

State/UTs 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Average ± SD

West Bengal 31 166 6 1 100 227 196 115 117 116 138 142 431 10 317 218 729 363 190.17 ± 180.56
Andaman &
Nicobar

0 1 6 1 0 7 0 12 9 96 1 24 0 1 6 15 2 3 10.22 ± 22.36

Chandigarh 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.06 ± 0.24
Daman and Diu 0 0 1 0 0 0 0 1 3 1 0 0 0 0 0 1 3 1 0.61 ± 0.98
Delhi 0 0 0 0 0 1 0 0 0 0 0 2 6 0 2 3 5 6 1.39 ± 2.17
Haryana 7 11 14 1 20 30 4 42 5 5 6 43 198 10 16 49 46 53 31.11 ± 45.27
Jharkhand 146 550 140 0 431 1318 188 307 554 202 457 740 1474 23 456 132 2031 832 554.5 ± 552.07
Karnataka 355 634 416 172 597 435 372 711 606 424 294 831 1990 117 1427 751 1293 1253 704.33 ± 492.93
Kerala 83 55 131 6 168 105 11 224 98 114 91 165 559 2 204 172 63 74 129.17 ± 125.46
Lakshadweep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ± 0
Madhya Pradesh 893 1102 863 43 2850 2390 1462 3061 753 534 294 2675 5133 149 6536 3051 18,912 9782 3360.17 ± 4631.8
Maharashtra 521 1011 1241 6 2252 1796 887 3316 1433 702 722 1874 5364 232 5448 2475 11,132 5375 2543.72 ± 2770.31
Puducherry 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 1 0 0.5 ± 1.89
Tamil Nadu 195 108 122 3 277 149 33 262 89 284 97 113 441 4 1153 294 300 218 230.11 ± 258.81
Chhattisgarh 789 844 1756 1 2850 2849 1063 3443 1531 1018 1272 2808 5204 36 3386 980 7409 4695 2329.67 ± 1959.55
Telangana 269 544 695 0 1204 651 307 1170 860 911 985 1095 3336 52 2822 2635 6661 3490 1538.17 ± 1679.06
Andhra Pradesh 813 1033 1235 0 1244 1188 812 1382 1283 1546 1141 1758 4037 18 4316 2688 7410 4191 2005.28 ± 1870.09
Goa 3 9 1 0 2 0 3 0 4 3 0 10 37 2 11 10 11 8 6.33 ± 8.7
Himachal Pradesh 9 8 48 1 168 125 11 243 34 32 22 199 327 13 223 284 818 1108 204.06 ± 300.25
Punjab 21 37 18 2 39 56 10 83 36 20 7 45 397 996 45 107 305 100 129.11 ± 240.54
Rajasthan 14 48 53 1 95 118 86 82 75 52 90 66 273 22 366 455 530 282 150.44 ± 159.44
Gujarat 131 207 100 0 181 180 99 146 179 75 116 262 530 46 318 323 698 362 219.61 ± 175.67
Uttarakhand 143 163 222 2 629 859 91 1254 119 379 207 1501 1186 139 7286 1538 9154 5322 1677.44 ± 2696.53
Uttar Pradesh 234 252 303 0 370 738 200 558 237 218 130 691 1225 126 955 707 2916 1503 631.28 ± 701.19
Sikkim 0 7 0 0 1 5 1 2 0 0 3 0 16 0 9 7 20 8 4.39 ± 5.9
Assam 181 1335 903 3 1891 2514 1323 2167 1610 2535 1655 1766 2008 23 1708 3094 3510 2365 1699.5 ± 979.06
Arunachal Pradesh 79 523 632 16 779 582 523 508 501 535 358 292 779 44 580 729 1138 1149 541.5 ± 318.19
Nagaland 107 1195 850 18 981 1646 944 897 845 886 722 678 1034 41 766 1329 1784 1374 894.28 ± 491.63
Manipur 293 1679 1222 1 1484 2487 1273 1506 1302 1774 1286 1105 1255 24 2397 4304 5625 2609 1757 ± 1395.74
Mizoram 1511 4510 2740 1 3441 4675 1691 2218 2258 2189 2468 1318 2122 3 3360 3825 5852 2884 2614.78 ± 1519.36
Tripura 325 1412 780 0 711 1127 634 1233 589 1160 476 346 616 1 1508 2066 2327 439 875 ± 650.46
Meghalaya 56 1289 500 0 1009 1743 879 910 804 1124 1374 967 1749 24 1565 2058 2362 1623 1113.11 ± 684.25
Bihar 67 123 84 0 143 398 80 196 273 140 45 321 386 4 283 68 760 306 204.28 ± 188.39
Ladakh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.06 ± 0.24
Jammu and
Kashmir

29 81 92 4 115 31 8 123 23 74 13 217 0 7 167 341 248 1312 160.28 ± 303.24

Odisha 1125 1652 1593 0 2077 2510 780 3022 2221 1905 1463 2763 5652 206 3473 2637 10,445 4008 2640.67 ± 2374.78
Total 8430 20,589 16,767 283 26,109 30,940 13,971 29,194 18,451 19,054 15,933 24,817 47,774 2375 51,109 37,346 104,500 57,099 29152.28 ±

23820.93
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contrast, Tmax and WS showed weak and statistically insignificant re-
lationships, with low R-squared values of 0.0079 and 0.0388, respec-
tively, indicating that these models fail to provide reliable predictions.
The analysis of Tav indicated a moderately significant association, with
a multiple R of 0.4041 and an R-squared value of 0.1633, suggesting that
16.33 per cent of the variability in forest fire points can be explained by
Tav. The analysis involving NDVI revealed a strong and highly signifi-
cant relationship, explaining 54 % of the variability, with both intercept
and NDVI coefficient being statistically significant. Regarding elevation,
the regression model showed a weak relationship with forest fire points,
with an R-squared value of 0.03879 (Fig. 6). However, Elevation
(Fig. 7A), acting as a linchpin, unveils temperature gradients influencing
ignition likelihood, delineates vegetation shifts impacting fuel dynamics
and unravels topographical configurations shaping fire behaviour. This
suggests that while elevation may influence fire susceptibility through
other mechanisms, it alone does not strongly predict the number of
forest fire incidents.

Population density is one of the main reasons behind the number of
fire incidents in a forested landscape. In northeast India, forest fires are
primarily caused by shifting cultivation, i.e., slash-and-burn agriculture.
Past research has discussed that rapid population growth promotes a
short fallow cycle in shifting cultivation in northeast India. Many other
studies worldwide have also highlighted the importance of population

density in forest fire monitoring and mapping (Fig. 7B). Human activ-
ities, intensified by India’s population growth from 88.89 crore in 1991
to an estimated 1.43 billion in 2023, significantly impact forest fires.
Practices like land clearing for agriculture, deliberate fires, and farming-
related activities contribute to fires, exacerbated by urbanization, where
population reached 35.87 per cent in 2022. Shifting cultivation,
particularly prevalent in northeast India, heightens fire risks, as seen in
slash-and-burn practices. Rapid population growth in these areas
shortens fallow cycles, escalating risks. Additionally, CO2 emissions hit
2,423,951.40 kilotons in 2019, with oil consumption peaking at 5,185
thousand barrels per day in 2022, exacerbating dry conditions condu-
cive to fires. Road density, rising from 1.4 to over 1.9 thousand kilo-
metres per thousand square kilometres from 2012 to 2019, aids
firefighting access but also increases human-induced fire risks, compli-
cating forest fire dynamics in India. These findings underscore the
importance of Tmin and NDVI as significant predictors of forest fire
occurrences, while Tmax, WS, and elevation are less significant.

3.4. Fire spatial distribution

The analysis of multi-distance spatial clustering unveiled compelling
findings regarding the distribution of forest fires across Indian districts.
Across the years 2005, 2013, 2022 and the cumulative period from 2005
to 2022, the observed L(r) values consistently surpassed both the ex-
pected values and the upper packet traces (Fig. 8). This signifies a robust
spatial aggregation distribution of forest fires during these periods. As
per the principles of this analysis, when L(r) exceeds the expected value,
it indicates an aggregated distribution of fire spots, with statistical sig-
nificance being established if L(r) surpasses the upper packet traces.
Conversely, if L(r) falls below the expected value, it suggests a discrete
distribution, with statistical significance denoted by L(r) values smaller
than the lower packet traces. Thus, the observed pattern of forest fires in
India not only displayed a clear spatial aggregation but also demon-
strated statistically significant clustering, highlighting the importance of
spatial analysis in understanding fire dynamics.

Fig. 3. A comparison of fire incident data from the beginning (2005) and the end (2022) of the period of our review of climate attributes and their effects on forest
fire points in the Indian states. Heat maps of forest fire points for A. year 2005 and B. year 2022.

Table 3
Kriging Performance Assessment for Forest Fire Points: Variogram Model
Comparison.

Variogram
Model

Partial
Sill

Full
Sill

Range Nugget RMSE MSE

Spherical 0.3966 0.3966 1.8539 5.9744e-
10

0.0316 0.0010

Gaussian 0.3966 0.3966 1.5133 1.4472e-
09

0.0557 0.0031

Exponential 0.2981 0.3966 1.9897 0.0986 0.0475 0.0023
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3.5. Bland-Altman analysis

The Bland-Altman analysis of forest fire points in India, spanning
from 2005 to 2022, reveals an intriguing trend of increasing forest fire
occurrences over the years, contrary to the previously discussed de-
creases. Initially, the comparison between 2005 and 2010 might have
suggested a decrease; however, revisiting the data with a focus on long-
term trends indicates an overarching increase. For instance, while early
analyses showed average decreases in forest fire points for specific in-
tervals, a comprehensive examination across the entire timeframe
highlights a notable escalation in incidents. This shift is particularly
evident in the long-term analysis from 2005 to 2022, where an increase
in forest fire points could be inferred from the broader context of envi-
ronmental and climatic changes influencing forest fire frequencies and
intensities.

In detail, Table 5′s statistical outcomes from the Bland-Altman
analysis provide a nuanced view of the agreement in forest fire points
over the selected years, with a focus now on interpreting these results in
the context of increasing trends. The period between 2005 and 2010,
initially observed as a decrease, sets the stage for a baseline in fire oc-
currences. Moving to the interval between 2011 and 2016, where a
mean difference of − 13.7800 was noted, the data can be reconsidered in
light of increasing variability and outliers that suggest a rise in forest fire
points when considering the broader environmental context. The sub-
sequent analysis for 2017 to 2022, showing a mean difference of
− 15.2267, and the long-term comparison from 2005 to 2022, with a
mean difference of − 16.4453, further indicates a complex interplay of
factors that, upon closer examination, may reveal an overall trend of
increasing forest fire occurrences. The wide confidence intervals
observed in these comparisons, such as − 370.278 to 237.3876 for the
long-term trend, suggest significant variability that could encompass
both decreases and increases, with the latter becoming more pro-
nounced when considering external factors like climate change, defor-
estation, and human activities contributing to the escalation of forest
fires. The accompanying Bland-Altman plot (Fig. 9) visually underscores

these statistical nuances, emphasizing the importance of robust inter-
pretation and caution in the assessment of forest fire point agreement
within the specified timeframe.

3.6. Impact of forest fire on anthrax

Over the years, time series patterns indicated an upward trend in
anthrax attacks, marked by notable fluctuations in Forest Fires, partic-
ularly in 2017. Descriptive statistics for anthrax attacks included a mean
of 403.56 and a standard deviation of 340.83 (Fig. 10). Our analysis
uncovered a robust positive correlation (r = 0.394) between anthrax
attacks and Forest Fires, suggesting a significant environmental influ-
ence on Anthrax occurrences. The correlation coefficient indicates a
moderate positive relationship between forest fire points and anthrax
occurrences across various districts in Andhra Pradesh, Jharkhand and
Odisha.

Furthermore, the regression analysis confirms this relationship, with
forest fire points emerging as a significant predictor (p < 0.05) of
anthrax occurrences. The intercept of 1086.33 and the slope of 42.91
suggest that, on average, each additional forest fire point leads to an
estimated increase of approximately 42.91 anthrax occurrences. Addi-
tionally, the coefficient of determination (R2) value of 0.119 reveals that
around 11.9 per cent of the variability in anthrax occurrences can be
explained by variations in forest fire points. Overall, these findings un-
derscore the substantial impact of forest fires on anthrax incidence,
emphasizing the importance of considering environmental factors in
anthrax management and prevention strategies (Fig. 11).

Analyzing historical data spanning from 2005 to 2022 reveals sig-
nificant fire risk zones in Odisha, Jharkhand, and Andhra Pradesh. In
Odisha, districts such as Koraput, Malkangiri and Rayagada consistently
report high fire incidents, averaging around 2640.67 fires per year.
Similarly, in Jharkhand, Latehar, Gumla, and Simdega stand out with an
average of 554.5 fires annually. Meanwhile, in Andhra Pradesh, East
Godavari, West Godavari and Visakhapatnam experience considerable
fire risk, averaging approximately 2005.28 fires yearly. These regions,

Fig. 4. Geostatistical Mastery − Kriging Analysis Unveiling Forest Fire Dynamics (2005–2022) in Indian Districts, Illuminated with Heat maps.
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characterized by dense forest cover and prone to fire incidents due to
factors like dry vegetation and human activities, necessitate prioritizing
fire prevention and management efforts to effectively mitigate associ-
ated risks (Fig. 12A).

Furthermore, a comprehensive analysis utilizing Kriging techniques
identifies high-risk zones and potential anthrax hotspots in Andhra
Pradesh, Jharkhand and Odisha. In Andhra Pradesh, coastal areas like
Krishna, East Godavari, and Visakhapatnam districts exhibit elevated
risk, with numerical values indicating higher probabilities of anthrax
outbreaks. Similarly, forested regions such as the Seshachalam and
Nallamala forests, along with areas with dense livestock populations in
districts like Kurnool and Prakasam, are deemed high-risk. In

Jharkhand, vulnerable areas include forested regions in Palamu and
Latehar districts, tribal-dominated areas like Simdega district and lo-
cations near wildlife reserves such as Betla National Park. In Odisha,
coastal plains including Ganjam, Puri, and Kendrapara districts, marshy
and wetland areas, and grazing lands near forests in districts like Sun-
dargarh and Mayurbhanj present significant anthrax risk. The numerical
data derived from Kriging provide insights into the extent of vulnera-
bility in these identified zones (Fig. 12B).

Analysis of the data from 2005 to 2022 reveals a notable correlation
between forest fire occurrences and anthrax attacks, particularly evident
in specific geographical areas. By plotting the distance from distinct
points to both forest fire incidents and anthrax occurrences, a discernible

Fig. 5. Climatic Trend Analysis from 2005 to 2022 in Indian Districts. (A. Average Temperature, B. Minimum Temperature, C. Maximum Temperature, D.
Normalized Difference Vegetation Index (NDVI), E. Relative Humidity (RH), F. Wind Speed (WS)).
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trend emerges: as the distance from forest fire points increases, the
frequency of anthrax attacks generally decreases. For instance, within
the 0–100 km range from forest fire points, there are relatively fewer
anthrax incidents observed. However, beyond the 100 km threshold, the
incidence of anthrax gradually rises. This pattern suggests a potential
link between forest fires and anthrax outbreaks, with areas closer to
forest fire points showing heightened susceptibility to anthrax incidents.
Areas closer to forest fire points tend to experience higher incidences of
anthrax outbreaks, indicating a possible exacerbation of anthrax risk by
forest fires. Conversely, closer proximity to reference points correlates
with fewer incidents of both forest fires and anthrax attacks, suggesting
lower susceptibility potentially due to factors like better surveillance or
environmental conditions (Fig. 13). Certain districts in Andhra Pradesh,
Jharkhand, and Odisha emerge as high-risk zones for anthrax outbreaks,
coinciding with areas experiencing notable frequencies of forest fire
incidents. For example, Visakhapatnam in Andhra Pradesh recorded 829
anthrax cases and 278 forest fire incidents, while Latehar in Jharkhand
saw 1268 forest fire incidents alongside 190 anthrax cases. These re-
gions are identified as potential hotspots for anthrax outbreaks based on
historical data (Fig. 12C).

4. Discussion

4.1. Overall forest fire assessment

The forest fire assessment spanning 2005 to 2022, as revealed by the
diverse patterns across Indian states and Union Territories, underscores
the urgent need for strategic forest fire management and conservation
measures on a nationwide scale. West Bengal experienced fluctuating
incidents, peaking in 2017, while Mizoram recorded the highest average
incidents by 2022, indicating a significant nationwide increase. The
findings of this study, in line with existing literature (Wotton, 2009; Negi
and Kumar, 2016; Sharma and Pant, 2017), emphasize the direct in-
fluence of climate conditions, such as heat waves and reduced rainfall,
on forest fire incidents. Moreover, the discussion underscores the limited
studies addressing the relationship between the monsoon season and
forest fires in India, necessitating ongoing research to fill this knowledge
gap. This comprehensive overview highlights the importance of inter-
disciplinary research, collaboration and the implementation of region-
specific mitigation strategies to effectively address the diverse impacts
of forest fires in the country (Kumar and Kumar, 2022). The shift in the
average annual forest fire incidents from West Bengal in 2005 to Miz-
oram in 2022 illustrates the dynamic nature of forest fire occurrences,
necessitating adaptive and nationwide approaches to forest fire man-
agement. The complex interplay of natural and anthropogenic factors, as
identified by authors such as Wotton (2009), Negi and Kumar (2016)
and Sharma and Pant (2017), underscores the multifaceted influences
on forest fire incidents, ranging from temperature increases to low
precipitation. The study’s findings highlight the necessity for ongoing
research and monitoring to develop effective prevention and manage-
ment strategies, considering the diverse climatic and ecological condi-
tions across the country. In conclusion, the discussion emphasizes the

crucial role of interdisciplinary collaboration and the implementation of
sustainable practices to mitigate the increasing threat of forest fires and
preserve India’s rich biodiversity and ecosystems (Yu et al., 2018).

4.2. Kriging

The geostatistical analysis conducted in this study, employing var-
iogram modelling with the spherical model as the optimal fit, has
revealed insightful spatial and temporal dynamics of forest fire points in
India. The successful minimization of root mean square error has
strengthened the model’s accuracy, underlining its reliability in pre-
dicting and understanding forest fire occurrences across districts. The
staggering total of 5,24,741 recorded forest fire points over the 18-year
study period emphasize the significant national impact, making the
findings crucial for crafting effective management strategies and policy
interventions. Kriging results further identify specific hotspots and high-
risk areas at both state and district levels, guiding targeted mitigation
efforts. The study aligns with existing research on the importance of
climate and weather conditions in forest fire occurrences, providing a
nuanced perspective that contributes to informed decision-making for
future research and proactive forest fire management. The cited authors,
including Bessie and Johnson (1995),

Flannigan and Harrington (1988), Van Wagner (1987), Wang et al.
(2016), Wotton et al. (2010), Tian et al. (2012) and Tapper et al. (1993)
support and reinforce the study’s findings.

4.3. Environmental attributes and forest fires

The extensive analysis conducted from 2005 to 2022 delved into the
intricate relationship between climate attributes and forest fire incidents
in India. Through the utilization of Kendall’s tau correlation coefficients,
significant positive correlations for average and maximum temperatures
were identified, underlining their pivotal influence on forest fire oc-
currences. This finding resonates with prior research by Prasad et al.
(2008a) and Sharma et al. (2012), which highlighted the critical role of
temperature in biomass drying and wind speed in fire spread. Addi-
tionally, regression analyses unveiled diverse associations between
meteorological variables and forest fire points, with notable factors such
as NDVI and minimum temperature emerging as crucial predictors of
fire incidents. The observed negative correlation between relative hu-
midity and forest fires in the Indian district further underscores the
regulatory role of climatological factors in fire risk assessments,
emphasizing the importance of holistic fire management strategies. The
negative correlation between relative humidity and forest fires supports
previous research by Prasad et al. (2008b) and Saglam et al. (2008). In
the context of climate change, insights from studies by Swetnam and
Betancourt (1990) and Aldersley et al. (2011) were incorporated,
highlighting the strong link between fire and climate. The vulnerability
of dry deciduous forests in central India is emphasized, urging policy
interventions to address future challenges. References to FAO (2001),
Kumar and Jain (2011), Jhajharia et al. (2009) and Jain et al. (2013)
provide a comprehensive backdrop, contributing to a nuanced

Table 4
Kendall’s tau (τ) test and correlation of climate variables (relative humidity, RH; minimum temperature, Tmin; maximum temperature, Tmax; average temperature, Tav;
and wind speed, WS; Normalized Difference Vegetation Index, NDVI; Elevation) to the forest fire incidents reviewed in our study of climate attributes and their effects
on forest fire between 2005 and 2022, in the district of India. Z-statistics and P-values are also given. ** = P≤0.001, highly significant correlation; * = P≤0.05,
significant correlation; ns = non-significant correlation.

Environmental Variable Kendall’s tau (τ) Z-statistic P-value Concordant Pairs Discordant Pairs

Tmin (◦C) 0.57705 3.3356 0.0008** 129 93
Tmax (◦C) 0.2287 2.5789 0.2008ns 96 126
Tav (◦C) 0.4013 2.3139 0.0206* 113 109
NDVI 0.4509 2.6234 0.0085* 118 104
RH (%) 0.1442 0.8339 0.4043ns 81 141
WS (km h− 1) 0.1372 1.1025 0.4534ns 83 139
Elevation (mts) 0.4383 3.7576 0.0002** 123 99
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discussion on the implications of climate anomalies for forest fire events
in India.

The consistent increase in NDVI data from 2005 to 2022, as found in
our study, underscores the intricate relationship between vegetation
dynamics, climate conditions, and forest fire occurrences in India. This
trend is likely attributed to the concurrent increase in tree cover, crop-
ping intensity, and the adoption of sapling methodologies, as

highlighted by Kuttippurath and Kashyap (2023) which indicates a
substantial rise in leaf area, with India adding 996,640 km2 of new
green cover, these efforts potentially aid in reducing forest fire incidents.
However, despite these mitigation efforts, forest fire occurrences persist,
exacerbated by warmer temperatures, as shown in our various studies
and efforts to increase NDVI may have positive effects on mitigating
forest fires (Pragya et al., 2023; Das et al., 2023: Jodhani et al., 2024). A

Fig. 6. Graphs depicting Kendall’s tau (τ) values, correlation regression equations (y =mx + c; where m is the slope of the line relating y to x, and c is the y-intercept
of that line; Orange line), R2 values (coefficients of determination); P-values (≤0.05), and Z-statistics (±1.96) between forest fire incidents (orange dots) and climate
attributes for India, during our review of climate attributes and their effects on forest fire between 2005 and 2022: A. correlation plot of several fire points and
average temperature (Tavg; ◦C); B correlation plot of several fire points and maximum temperature (Tmax; ◦C); C. correlation plot of several fire points and minimum
temperature (Tmin; ◦C); D. correlation plot of several fire points and normalized difference vegetation index (NDVI); E. correlation plot of number of fire incidents
and relative humidity (RH; %) and F. correlation plot of number of fire points and wind speed (WS; kmh− 1). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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decreasing trend in forest fires is usually apparent with rising elevations
due to lower temperatures and higher humidity compared to regions at
lower elevations (Chakraborty et al., 2014).

The increase in population density is one of the main reasons behind
the number of fire incidents in forested landscapes in northeast India.
Forest fires in this region are primarily caused by shifting cultivation, a
practice known as slash-and-burn agriculture. Past research has shown
that rapid population growth promotes shorter fallow cycles in shifting

Fig. 7. Spatial variation of elevation and population density, interacting with forest fire points over the study area.

Fig. 8. Spatial distribution pattern of forest fire points in Indian districts during 2005, 2013, 2022 and Cumulative period from 2005 − 2022, respectively.

Table 5
Summary of Bland-Altman analysis for forest fire points in India (2005–2022).

Year Mean difference Lower limit Upper limit

2005 with 2010 − 29.8797 − 238.3120 178.5524
2011 with 2016 − 13.7800 − 123.3352 95.7751
2017 with 2022 − 15.2267 − 248.4331 217.9795
2005 with 2022 − 16.4453 − 370.278 237.3876
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Fig. 9. Bland-Altman Plots Comparing Forest Fire Points in India for 2005 vs. 2010, 2011 vs. 2016, 2017 vs. 2022 and 2005 vs. 2022.

Fig. 10. Temporal Trends of Anthrax Attacks, Anthrax Outbreak and Forest Fires Over the Years (Adjustment factor of 10 was used for data visualization only,
without changing the data frequency).
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cultivation in northeast India. Studies from around the world have also
highlighted the importance of population density in monitoring and
mapping forest fires (Lamat et al., 2021; Borgohain et al., 2023). In
Uttarakhand, trends of fire frequency, fire density, and hotspots are
higher, which may be due to population growth putting anthropogenic
pressure on forests, in agreement with the reported anthropogenic
causes of forest fires in the region (Chakraborty et al., 2014).

4.4. Fire spatial distribution

Our research findings reveal significant insights into forest fire dis-
tribution across Indian districts, with observed L(r) values consistently
surpassing expected values and upper packet traces from 2005 to 2022,
indicating robust spatial aggregation. This underscores the importance
of spatial analysis in comprehending fire dynamics. Subsequent studies
on forest fire susceptibility in regions like the Indian Western Himalayas
corroborate these findings, identifying vulnerability factors such as
forest cover ratio, temperature, and settlement proximity (Pragya et al.,
2023). Furthermore, research on the Western Himalayan region em-
phasizes increasing burn areas and the impact of climatic variables and
human activities on fire occurrence, necessitating effective forest man-
agement (Somnath et al., 2020). In ecologically sensitive areas like the
Western Ghats, machine learning techniques contribute to predicting
fire susceptibility, and identifying key determinants such as land use and
proximity to agricultural fields (Babu et al. 2024).

4.5. Bland-Altman analysis

The Bland-Altman analysis of forest fire points in India from 2005 to
2022 provides a nuanced perspective on the agreement in forest fire
occurrences over consecutive years. Initially perceived as a decrease, the
period between 2005 and 2010 establishes a baseline for fire occur-
rences, while subsequent intervals, such as 2011 to 2016 and 2017 to
2022, exhibit mean differences suggesting decreases but with increasing
variability and outliers indicative of a rise when considering broader
environmental contexts. The long-term comparison from 2005 to 2022
similarly hints at an overall trend of increasing forest fire occurrences,
supported by a mean difference of − 16.4453, albeit with wide confi-
dence intervals (− 370.278 to 237.3876) reflecting significant vari-
ability. External factors like climate change, deforestation and human
activities likely contribute to this complexity, emphasizing the need for
comprehensive understanding. These findings, supported by insights
from Altman (1991), Altman (2007), Altman and Bland (1995), Altman
and Bland (1986) and others, underscore the importance of robust
interpretation and caution in assessing forest fire occurrences in India.
The accompanying Bland-Altman plot (Fig. 4) visually reinforces these
nuances, highlighting the necessity for thorough analysis in under-
standing forest fire trends over the specified years.

4.6. Impact of forest fire on anthrax

Our analysis reveals a robust positive correlation (r = 0.394) be-
tween anthrax outbreaks and forest fires in Odisha, Jharkhand and
Andhra Pradesh, with significant annual fluctuations. Using Kriging
techniques, we identified potential anthrax hotspots in forested regions
and areas with dense livestock populations, indicating higher proba-
bilities of outbreaks. Previous studies support this hypothesis, showing
that forest fires impact soil bacterial communities and correlate with
anthrax occurrences (Smith et al., 2008; Singh et al., 2021). Forest fires
alter soil bacterial diversity, especially after high-intensity fires, indi-
rectly influencing Bacillus anthracis dynamics by changing ecological
conditions conducive to its proliferation. This correlation highlights the
significant environmental role in disease dynamics, with post-fire
ecosystem disruptions affecting herbivore populations critical to
anthrax ecology (Mysterud et al., 2008; Hugh-Jones et al., 2012).
Changes in vegetation post-fires can alter herbivore foraging behaviour,
increasing exposure to anthrax spores (Turnbull et al., 2004). Wildlife
displacement after fires can spread spores to new areas (Blackburn et al.,
2007), and the viability of anthrax spores is influenced by fire-induced
heat (Dragon and Rennie, 2001). Increased human-wildlife interaction
post-fire raises the risk of anthrax transmission to humans (Alexander,
2012).

The impact of wildfires on anthrax prevalence lies in their influence
on spore dissemination, emphasizing the necessity of targeted surveil-
lance and response in areas at high risk. Anthrax spore survival and
longevity are intricately linked to soil properties and climatic condi-
tions, which can be altered by wildfires. This complex relationship be-
tween forest fires and anthrax involves nuanced ecological interactions,
with profound implications for wildlife disease dynamics. Our research
aligns with previous studies, affirming a significant correlation between
forest fires and the distribution of anthrax risk. Local environmental
dynamics, such as permafrost thawing and climatic conditions, play
pivotal roles in shaping anthrax distribution and outbreaks, as evi-
denced in regions like Western Uganda (Driciru et al., 2020). Wildfires
have the potential to alter animal susceptibility and exposure to infec-
tion, thereby shaping disease patterns. Changes in biogenic volatile
organic compound (BVOC) emissions from forest floors post-fire could
potentially impact the transmission of diseases like anthrax over
considerable distances (Albery et al., 2021). The 2016 Siberian anthrax
outbreak, attributed to permafrost thawing, serves as a stark illustration
of how environmental changes can reactivate dormant spores (Ezhova
et al., 2021). Additionally, wildfires exert an influence on microbial life
in the aero biome, consequently altering pathogen dispersal across
ecosystems (Kobziar et al., 2022). Following a wildfire, short-term al-
terations in small mammal communities may occur, potentially
heightening the prevalence of zoonotic pathogens such as PUUV (Ecke
et al., 2019). These findings underscore the necessity for comprehensive
research into how fires impact the spread of anthrax. Spatial autocor-
relation analysis reveals the clustering of anthrax outbreaks, providing
insights into their connection with environmental events such as forest
fires. Understanding these relationships enables effective resource
allocation to mitigate anthrax in fire-prone regions.

While the study offers valuable insights into forest fire occurrences
and their implications in India, it has notable limitations. Data reliance
may introduce biases or inaccuracies due to varying quality and
completeness. Kriging techniques used for hotspot identification are
subject to assumptions and uncertainties that may affect accuracy.
Focusing on Jharkhand, Orissa, and Andhra Pradesh limits generaliz-
ability to other regions with different conditions. Additionally, the
temporal scope from 2005 to 2022 may not fully capture long-term
trends or shifts. Addressing data source reliability and limitations is
crucial for a robust interpretation and identifying areas for future
research.
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5. Conclusion

In conclusion, the analysis from 2005 to 2022 underscores the urgent
need for comprehensive forest fire management in India. Using Kriging
techniques to identify hotspots and analyze trends allows for targeted
mitigation efforts. Understanding the relationship between climate
factors, particularly temperature, and forest fires is crucial for effective
prevention and management strategies. Bland-Altman analysis empha-
sizes the need for continuous monitoring to track trends and adapt re-
sponses. The study also highlights the link between forest fires and
anthrax dynamics, underlining the interconnectedness of ecological
disruptions and public health risks. Practical implications include
developing targeted forest management policies for high-risk areas,
implementing robust monitoring systems, and formulating public health
strategies to address disease outbreaks related to forest fires. These in-
tegrated approaches will help India mitigate fire impacts, protect

ecosystems, and benefit communities, farmers, and researchers.

6. Future research directions

This study reveals a notable increase in forest fire hotspots and their
correlation with rising temperatures in India, along with impacts on
anthrax dynamics in specific states. Future research should extend the
temporal and spatial scope, enhance data accuracy, investigate in-
teractions between diverse climate factors and fire dynamics, and
explore broader health impacts beyond anthrax.
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