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Avian Influenza (AI), caused by highly pathogenic strains of influenza viruses, poses a significant threat 
to poultry populations and public health worldwide. This study offers a comprehensive evaluation of 
the spatial and temporal dynamics of HPAI outbreaks in India, employing a multidisciplinary approach 
that integrates geospatial analysis, machine learning modelling, remote sensing, and environmental 
risk factor assessment. The resulting incidence map provides a powerful visual representation, offering 
valuable insights into the distribution and concentration of HPAI (Highly Pathogenic Avian Influenza) 
outbreaks across the country. The study identifies a peak in HPAI outbreaks during the winter and 
spring seasons. Critical environmental variables such as air temperature, enhanced vegetation 
index (EVI), leaf area index (LAI), potential evapotranspiration (PET), rain precipitation rate, specific 
humidity, and wind speed are identified as significant predictors of HPAI risk. Ensemble technology 
was adopted by integrating high-performing random forest (RF) and classification tree (CT) models for 
HPAI risk assessment. The risk map generated and estimated basic reproduction numbers (R0) indicate, 
the southern and north-eastern regions of India are vulnerable to HPAI. The findings presented provide 
a holistic perspective essential for effective surveillance, strategic planning for resource allocation 
and policy development for disease management, aimed at safeguarding both avian and human 
populations from the looming threat of influenza outbreaks.
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Highly pathogenic avian influenza (HPAI) viruses, specifically the H5N1 and H5N8 strains, pose substantial 
zoonotic threats with significant implications for public health and the global economy1–4. These viruses have 
a demonstrated capacity to cause severe morbidity and mortality in avian populations, leading to disruptions 
in poultry industries worldwide. Moreover, their ability to infect humans through close contact with infected 
poultry underlines their pandemic potential, with human cases exhibiting respiratory illnesses ranging from 
mild to severe, often with fatal outcomes5.

The H5N1 virus, first identified in Guangdong Province, China, in 1996, marked a turning point in avian 
influenza epidemiology. Its subsequent transmission to humans through live poultry markets in Hong Kong 
in 19976 emphasized the zoonotic potential of HPAI viruses. Initially confined to Southeast Asia, the virus 
underwent genetic diversification, resulting in multiple clades that facilitated its spread to Europe, India, Africa, 
and the Middle East by 20057. India’s first H5N1 outbreak in January 2006 in Maharashtra’s Nawapur Sub-district8 
highlighted the country’s vulnerability, with subsequent outbreaks documented across various states. Migratory 
waterfowl, especially those along the Central Asian migratory flyway, play a pivotal role in HPAI transmission, 
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linking India’s wetlands to global spread dynamics9–11. These birds, congregating in India’s wetlands during 
winter, facilitate cross-species transmission to poultry, with seasonal outbreaks peaking between October and 
March12.

Despite advancements in surveillance and control measures, the recurring outbreaks of HPAI highlight the 
need for a deeper understanding of the environmental and spatiotemporal factors influencing its transmission. 
Research has consistently demonstrated the role of environmental determinants such as temperature, 
precipitation, humidity, and proximity to water bodies in the spread and persistence of HPAI viruses13–15. 
While spatiotemporal analyses have provided useful insights into outbreak dynamics, existing studies often 
face limitations, including short observation periods, geographically restricted data, and a narrow focus on 
selected environmental variables. Previous studies, such as those on the spatial aggregation of H5N1 outbreaks 
in Bangladesh16, landscape suitability and HPAI outbreaks in India17, and the spatiotemporal distribution and 
seasonality of HPAI outbreaks in India from 2006 to 2021 have been valuable. Other research, such as modeling 
HPAI outbreaks in West Bengal, India18, and risk factor modeling of spatiotemporal HPAI patterns focusing 
only on anthropogenic variables19 also contributed to understanding outbreak patterns. Studies on HPAI spread 
in France20 and temperature-driven transmission patterns across Eurasia2,21 further illustrate regional patterns. 
Similarly, studies in Vietnam during 2003–200722, China in 2013–201423, Southern China in Early 200424, and 
Vietnam, 2015–201825 have provided key insights into the spatiotemporal spread of the virus. Despite these 
valuable contributions, many of these studies lack a comprehensive integration of diverse environmental 
datasets, often focusing only on spatiotemporal analysis with limited data and traditional methodologies. 
This limits the thorough understanding of the complex factors driving HPAI outbreaks. Traditional methods 
provide foundational insights but struggle with the scale and complexity of available data. Machine learning 
(ML) techniques, however, can process large, diverse datasets, uncover hidden patterns, and make accurate 
predictions. Recent ML advancements in infectious disease research highlight their potential for identifying 
environmental determinants and predicting outbreak risks26. The present study, HPAI outbreaks spanning from 
2006 to 2024 in India, aims to address these gaps by incorporating meteorological, remote sensing, geographical 
and anthropogenic parameters into a risk modeling framework, utilizing machine learning approaches for 
identifying vulnerabilities, which offers a visualized and comprehensive view of likelihood and impact of disease 
in a given region, helps the policy makers and planners to improve risk management and risk governance by 
prioritizing risk management efforts.

This interdisciplinary framework represents a significant advancement over traditional approaches by 
addressing the limitations of modelling efforts and regional constraints, by incorporating a broader spectrum of 
environmental variables and utilization of machine learning algorithms. By providing actionable insights into 
the dynamics of HPAI outbreaks, this work has the potential to inform evidence-based strategies for prevention 
and control, enhancing India’s preparedness for future outbreaks. Furthermore, the integration of ML with 
spatiotemporal analysis offers a scalable model for application in other regions, thereby contributing to the 
global understanding and management of HPAI risks.

Results
Spatial distribution
Over an 18-year period from 2006 to 2024, a total of 312 outbreaks of HPAI were reported across different parts 
of India. The Alappuzha district of Kerala experienced the highest number of outbreaks (39), followed by Jalgaon 
district in Maharashtra with 26 outbreaks. Kottayam district in Kerala and Puri district in Odisha each reported 
12 outbreaks each. Additionally, 10 outbreaks were reported in the districts of Ahmednagar, Beed, Gondiya, and 
Pune in Maharashtra, as well as in Birbhum and Murshidabad districts of West Bengal. The majority of districts 
reported outbreaks between 1 and 3. Figure 1 illustrates the geographical distribution of HPAI outbreaks across 
India.

Temporal distribution
The temporal analysis of HPAI outbreaks from 2006 to 2024 reveals monthly and yearly trends. A total of 312 
(100%) outbreaks were recorded over 18 years, with varying distribution across months and years. Figure  2 
provides a visual representation of the temporal trends in HPAI outbreaks. Monthly Distribution: Outbreaks 
peaked in January (32.64%) and December (13.76%), with relatively high occurrences also in March (16.96%) and 
February (11.52%). The lowest activity was observed during the monsoon months, particularly in July (0.96%) 
and August (0.96%), indicating seasonal patterns in outbreak occurrences. Yearly Distribution: The highest 
percentage of outbreaks occurred in 2021 (23.04%), followed by 2008 (22.72%) and 2006 (9.28%). Conversely, 
the years 2007, 2010, and 2023 reported the least outbreaks, with only 0.32 to 1.6% of cases recorded. Enhanced 
surveillance during high-risk months, pre-monsoon vaccination campaigns, strategic resource allocation, 
strengthening biosecurity, monitoring migratory bird activity educating stakeholders can significantly mitigate 
HPAI risks.

Spatial auto-correlation
A total of 46 districts spanning Jharkhand (3 districts), Kerala (5 districts), Madhya Pradesh (3 districts), 
Maharashtra (23 districts), Odisha (4 districts), Telangana (1 district), and West Bengal (7 districts) were 
recognized as HPAI hotspots (Fig. 3A, Table S1) based on positive Z-scores determined using the Getis–Ord Gi* 
index. A hotspot identified through positive Z-scores in the Getis–Ord Gi* index indicates a statistically significant 
clustering of high disease cases in a specific area. This helps pinpoint regions with increased transmission risk, 
allowing for targeted surveillance and control measures. The identification of HPAI hotspots has critical public 
health implications, necessitating targeted interventions to mitigate the risks. Enhanced monitoring enables 
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early detection and response, reducing human exposure and zoonotic transmission risks. Strategic resource 
allocation, including vaccines and diagnostics, ensures effective outbreak management in high-risk areas.

Space-time cluster analysis
A total of 11 clusters, encompassing 210 districts, were identified during the period from 2006 to 2024 (Fig. 3B; 
Table S2). Of these, 7 clusters (Clusters 1, 3–7, and 10) were classified as high-incidence clusters, covering 184 
districts with a high relative risk of HPAI ranging from 2.84 to 41.77. The remaining 4 clusters (Clusters 2, 8, 
9, and 11), comprising 26 districts, were categorized as low-incidence clusters with a relative risk ranging from 
0.04 to 0.38.

Fig. 1.  Spatial distribution of HPAI outbreaks in India, generated using ArcGIS Pro 3.2.1 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​e​s​r​i​.​c​o​
m​​​​​)​.​​​​
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Environmental risk factors identified through linear discriminant analysis (LDA)
The study identified the crucial environmental risk factors that play a significant role in the HPAI disease 
outbreak. Environmental factors demonstrating a p-value of 0.05 or less were recognized as strongly correlated 
with HPAI. According to LDA results, air temperature, enhanced vegetation index (EVI), leaf area index (LAI), 
potential evapotranspiration (PET), potential evaporation rate, rain precipitation rate, specific humidity, and 
wind speed emerged as the variables exhibiting the strongest associations with HPAI occurrence (Table  1). 
Consequently, these variables were considered for subsequent HPAI risk modelling and mapping.

Fig. 3.  (A) Hot spot map of HPAI in India identified through spatial autocorrelation, generated using ArcGIS 
Pro 3.2.1 (https://www.esri.com). (B) Spatial-temporal clusters of HPAI incidences in India, generated using 
SaTScan v10.1.2 (https://www.satscan.org) and R statistical software version 4.3 (https://www.r-project.org).

 

Fig. 2.  Temporal distribution of outbreaks (in percentage) of HPAI in India.
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Risk assessment and Estimation
The study employed climate-disease modelling based on the significant environmental risk factors identified 
through LDA. The distribution pattern of HPAI -affected (case) and unaffected (control) regions was visually 
represented in Figure S1. The case-control data underwent fitting to integrated machine learning models, and 
the best-fitted models were discerned based on a comprehensive set of statistical assessment criteria. The risk 
maps were generated utilizing machine learning modelling, with random forest (RF) and classification tree (CT) 
models emerging as the most effective models for simulating spatial risk based on disease data and relevant 
prediction factors, meeting the defined evaluation criteria as detailed in methodology. The RF model proved 
superior performance with the cohen’s kappa (Kappa) (0.68), receiving operating characteristic (ROC) (1.00), 
true skill statistics (TSS) (0.96), area under the ROC curve (AUC) (1.00), accuracy (0.98), F1 score (0.99), error 
rate (0.02), and logistic loss (LOGLOSS) (0.12), followed by CT model with Kappa (0.66), ROC (0.93), TSS 
(0.74), AUC (0.93), accuracy (0.85), F1 score (0.93), error rate (0.15), and LOGLOSS (0.34). The models, RF 
and CT, were selected for their ability to handle complex, non-linear relationships and provide high predictive 
accuracy. RF is well-suited for large datasets with many variables, while CT offers interpretability and decision 
rules. Together, these models complement each other by balancing accuracy and interpretability, enhancing 
the overall prediction of HPAI outbreaks. To enhance confidence in the predictive outcomes, an innovative 
ensemble approach was employed by averaging the scores of the RF and CT models (Table 2). This technique 
refined the prediction accuracy, enabling the delineation of HPAI risk within the study area. The combined 
prediction outcomes of ensemble models were used in the current study, which are in the scale of 0 (low risk) to 
1 (high risk) and the resulting risk map clearly indicates that HPAI is most likely to spread in the southern and 
north-eastern regions of India (Fig. 4A).

Transmission dynamics
Following the risk mapping, the basic reproduction number (R0) was computed and subsequently overlaid onto 
the risk map. R0 values exceeding 1.00 signify regions or districts experiencing an upward trend in disease 
incidence, while values below 1.00 indicate a decline. The R0 values depicted in Fig. 4B ranged from 0.75 to 
3.30, indicating a higher likelihood of HPAI outbreaks in districts situated in the north-eastern and southern 
regions. Significantly, 52 districts exhibited R0 values surpassing 1, with several in Assam, Maharashtra, and 
Kerala. Specifically, districts Ahmednagar of Maharashtra (3.30), followed by Bongaigaon, Dibrugarh, Kamrup 
Metropolitan, Nagaon, Baksa, and Chirang in Assam, as well as Nayagarh in Odisha, alongside Chandigarh, 
recorded R0 values 2.08, indicating a notably elevated risk of HPAI incidence in these specific areas (Table S3). 
The estimated vaccination coverage for these districts ranges from 10.55 to 69.74 per cent, indicating the critical 
insight derived from the R0 assessment underscores the importance of targeted intervention strategies in these 
high-risk districts to mitigate the potential spread of the disease. To understand the importance of wetland 
bodies in HPAI disease occurrence risk map was superimposed on wetland locations (Fig. 4C). It is evident that 
the regions near wetland locations associated with suitable environmental variables were identified as high-risk 
regions.

Discussion
Highly Pathogenic Avian Influenza outbreaks in India pose a significant threat to both poultry industries 
and public health, Our findings highlight the identification of potential risk zones, seasonal patterns, and 
environmental risk factors that influence the occurrence and transmission of HPAI, providing valuable insights 
for future efforts to mitigate the spread of HPAI in India. It is evident from the Fig. 1 that the reported outbreaks 
were more in Kerala, Maharashtra, and north-eastern states of India that aligns with findings from studies in 
Southeast Asia and Europe, which similarly identified hotspots in areas with high poultry density, wetland 
proximity, and substantial human-animal interfaces with trade activities27–29. Kerala and north eastern states are 

Parameters Mean SD F-value p-value 95% CI

Air temperature 24.34 3.68 14.31 1.82 × 10− 4* 23.96–24.72

Potential evaporation rate 212.82 81.84 14.88 1.36 × 10− 4* 204.38-221.26

Rainfall precipitation rate 1.84 3.07 43.45 1.60 × 10− 10* 1.52–2.16

Specific humidity 0.01 0.00 5.30 2.19 × 10− 2* 0.009–0.01

Surface pressure 98403.93 2895.99 0.40 0.53 98105.43-98702.43

Wind speed 2.31 0.76 6.53 1.10 × 10− 2* 2.23–2.39

Soil moisture 23.77 5.18 0.88 0.35 23.24–24.3

LST 29.18 6.11 0.56 0.46 28.55–29.81

NDVI 0.47 0.16 0.09 0.76 0.45–0.49

EVI 0.26 0.10 12.67 4.23 × 10− 4* 0.25–0.27

PET 759.1 1237.48 10.91 1.05 × 10− 3* 632.05-887.15

LAI 0.38 0.77 16.18 7.07 × 10− 5* 0.29–0.45

Water bodies 2288.98 2979.58 1.46 0.23 1981.86-2596.1

Table 1.  Critical environmental risk factors of HPAI identified using LDA. SD standard deviation, 
CI confidence interval. *Significant at 5 per cent level of significance.
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known for its extensive wetland ecosystems and migratory bird activity, provides ecological niches conducive to 
viral maintenance and spread. Moreover, Maharashtra’s prominence in poultry trade and farming may amplify 
transmission dynamics through the movement of infected birds or contaminated products. These observations 
are consistent with studies highlighting the role of trade networks in the spatial clustering of HPAI30. In 2016, 
the Food and Agriculture Organization (FAO) identified legal movements of live poultry as a crucial pathway 
for the spread of HPAI in the Middle East31. Research by Awada32 identified two global major peaks of HPAI in 
2006 and 2016 due to sudden surge in the annual average trade of live poultry.

We identified a distinct yearly seasonal trend, with higher instances in 2006, 2008, and in 2021 and with 
the peak of HPAI occurring between November and March (Fig. 2). The seasonal variations in outbreaks were 
closely tied to bird migration patterns, and weather conditions. The timing of these outbreaks often aligned 
with peak bird migration seasons, underscoring the need for heightened vigilance during these times. The 
pronounced winter peak in outbreaks, particularly in January, is consistent with global patterns where low 
temperatures and humidity enhance the environmental stability of the influenza virus33,34. The minimal 
activity during monsoon months may reflect unfavourable climatic conditions for virus survival, such as higher 
temperatures and rainfall leading to dilution of viral particles in aquatic systems. Similar to our findings, earlier 
research has shown that Northern Temperate or Subtropical countries, including Bangladesh, China, Egypt, 
and Turkey, as well as tropical nations like Cambodia, Indonesia, and Vietnam, experienced the highest H5N1 
outbreak peaks between January and March35. Consistent with our findings, Egypt, an avian influenza virus 
(AIV)-endemic region, exhibited increased odds of positive H5N1 virus infections in live bird markets during 
winter36. Park and Glass37 also noted a heightened risk of avian and human influenza in East and Southeast 
Asia during the winter months. Similarly, studies in Japan38 and Korea39 have reported a higher prevalence of 
H5N1 infections in both wild and domestic birds during winter, corroborating the seasonal trend observed in 
our study. Magalhaes40 found that the seasonal pattern of HPAI was linked to increased poultry stock and sales 
during Chinese New Year celebrations, which supports our current findings. Furthermore, a study by Chen41 
corroborated our research by demonstrating that the peak of H5N1 outbreaks occurs in the winter and spring 
seasons. A significant HPAI H5N1 outbreak was identified in April 2005, affecting various wild bird species at 
Qinghai Lake, China42,43. Qinghai Lake serves as a critical breeding ground for migratory waterfowl within the 
Central Asian Flyway and the East Asia-Australasia Flyway44. The Qinghai nature reserve supports approximately 
150,000 birds from over 180 species during the spring and summer seasons42. Among these, bar-headed geese 
(Anser indicus), a prominent species at this site, migrate to Southeast Asia and the Indian subcontinent over 

Sl. 
No Models Model Specification KAPPA ROC TSS AUC Accuracy

ERROR 
RATE

F1 
SCORE

LOG
LOSS

1. GLM
E (Y | X) = µ = g−1(Xβ )
Y- Expected Value, X-Conditional, Xβ - Linear Predicator,
g-Link Function

0.34 0.80 0.49 0.80 0.75 0.25 0.89 0.43

2. GAM
g (E (Y )) = β 0 + f1 (x1) + f2 (x2) + · · · + fi (xi)
Y-Response Variable, g-Link Function, fi-Specified Parametric Form, xi-Predicator 
Variable

0.34 0.80 0.49 0.80 0.75 0.25 0.89 0.43

3. RF
Y = 

∑
n
i=1f (tn)

Y- Average of aggregated predictions of the multiple decision trees,
tn – multiple decision trees trained on different subset of the same training data

0.68 1.00 0.96 1.00 0.98 0.02 0.99 0.12

4. GBM f (x) = arg minθ

∑
n
i=1L(yi , θ ) +

∑
M
m=1η ρ mφ m (x)

m- Iteration, η -Learning Rate, ρ m- Step length
0.50 0.93 0.72 0.93 0.84 0.16 0.92 0.31

5. NNET Y = f
(∑

n
i=1xiwi

)
+ b

Y-Output, xi-Inputs, wi- Weights, b- Bias
0.00 0.50 0.00 0.50 0.25 0.75 0.00 25.90

6. MARS f̂ (x) =
∑

k
i=1ciBi (x)

ci- Constant Coefficient, Bi (x)- Basis Function
0.41 0.87 0.60 0.87 0.80 0.21 0.91 0.34

7. FDA η l (x) = XT β l -0.01 0.50 -0.01 0.50 0.79 0.21 0.88 7.28

8. CT f (x) =
∑

T
j=1wjI(x ∈ Rj) 0.66 0.93 0.74 0.93 0.85 0.15 0.93 0.34

9. SVM {x : f(x) = xT β + β 0 = 0} 0.51 0.87 0.68 0.87 0.85 0.15 0.91 0.53

10. NB
P (c| x) = P (x|c)P (c)

P (x)
P (c| x)-Posterior Probability
P (x |c)-Likelihood,
P (c)-Class Prior Probability, P (c)-Predictor Prior Probability

-0.20 0.72 -0.18 0.72 0.30 0.70 0.47 3.55

11. ADA FT (x) =
∑

T
t=1ft (x)

ft- Weak Learner, x- Input, T - T th Positive or Negative Classifier
0.73 0.83 0.66 0.83 0.92 0.08 0.95 2.71

Table 2.  Evaluation metrices of machine learning models employed for risk prediction of HPAI. Generalized 
Linear Models (GLM), Generalized Additive Models (GAM), Random Forest (RF), Gradient Boosting 
Machine (GBM), Artificial Neural Network (NNET), Multiple Adaptive Regression Splines (MARS), Flexible 
Discriminant Analysis (FDA), Classification Tree Analysis (CT), Support Vector Machine (SVM), Naive Bayes 
(NB), Adaptive Boosting (ADA), Receiving Operating Characteristic (ROC) curve, True Skill Statistics (TSS), 
Area Under the ROC Curve (AUC), Logistic Loss (LOGLOSS).
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the Himalayas in the fall (September) and return to Qinghai Lake in April for the summer45. This migratory 
pattern significantly contributes to the winter and summer peaks of HPAI outbreaks in India. As of December 
2021, H5N1 virus outbreaks have been documented on a large scale among poultry and wild birds in more than 
77 countries, signalling expanded virus circulation12,46. The first human case of H5N1 virus infection in India 

Fig. 4.  (A) Risk prediction map of HPAI showing variations in colour ranging from green (low risk) 
to red (high risk). (B) Superimposition of basic reproduction number (R0) on the risk map (blue). (C) 
Superimposition of wetland location (blue dots) on the risk map. (D) Spatial pattern map of water body along 
with AI outbreak location. All maps were generated using ArcGIS Pro 3.2.1 (https://www.esri.com).
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was reported in June 2021, coinciding with the monsoon season in the country47. Over recent years, numerous 
subtypes of the HPAI viruses have been circulating in diverse bird populations on a large geographical scale. In 
particular in 2021, an unprecedented genetic variability of subtypes has been reported in birds, thus creating an 
epidemiologically challenging landscape46.

Our study examined the climatic factors influencing the survivability and persistence of HPAI in the 
environment and their role in facilitating disease spread. We identified significant associations between HPAI 
incidence rates with variables such as air temperature, enhanced vegetation index, leaf area index, potential 
evapotranspiration, rain precipitation rate, specific humidity, and wind speed. Similarly, previous research has 
demonstrated correlations between environmental parameters, including temperature, humidity, and wind 
speed, and the transmission of influenza viruses48. Research has shown that climatic factors such as temperature 
and relative humidity significantly influence HPAI virus circulation in live bird markets of Bangladesh (Islam et 
al., 2023). Previous studies have reported that AIV replication increases at lower temperatures (Siboonnan et al., 
2013), and colder conditions may prolong viral survival in secretions and faeces of infected poultry35,49. Similarly, 
Paek et al.50 demonstrated that higher temperatures reduce the likelihood of AIV survival. In Finland, Jaakkola 
et al.34 observed that a 1 °C drop in temperature was associated with an 11% increase in the predicted risk of 
influenza. Seasonal variations in influenza transmission have also been attributed to low absolute humidity, as 
shown in a study conducted in the continental United States51. Conversely, a study in Japan found that high 
humidity was linked to increased influenza incidence52. In Bangladesh, lower temperatures and humidity levels 
are observed between November and March compared to the rest of the year. Additionally, Chen et al.41 revealed 
that higher wind speeds negatively affect the H5N1 epidemic by enhancing ventilation in farms, markets, and 
other live poultry facilities in China, thereby reducing virus circulation. On the other hand, in Nigeria, low 
rainfall has been associated with a higher prevalence of AIV53. Several studies have also reported wind speed, 
leaf area index (LAI), and specific humidity as protective factors against H5N1 outbreaks using binary logistic 
regression models41. The occurrence of H5N1 outbreaks is negatively associated with wind speed, as strong 
winds enhance ventilation in farms, markets, and other live poultry facilities54. Si et al.55 using logistic regression 
analysis revealed that HPAI H5N1 outbreaks were strongly associated with Normalized Difference Vegetation 
Index (NDVI) and lower elevation, and outbreaks increased with an increasing human population density 
combined with proximity to lakes or wetlands.

According to our model, areas at high risk of HPAI transmission were projected to be located along the coastal 
areas and wetlands of India, spanning from the western coast of southern India to the north-eastern regions 
(Fig. 4). These regions encompass areas of paddy cultivation and traditional paddy-duck farming, which include 
numerous rivers, their tributaries, and lakes. Due to the mixture of semi-domestic and wild duck hosts, which 
are the typical carriers of AIVs, traditional rice-duck farming systems create an excellent setting for AIV spread. 
Additionally, as these ecosystems serve as resting sites for migratory birds, there is a significant likelihood of a 
high risk of AIV transmission56. The shared habitats between domestic ducks allowed to graze in water bodies 
with migratory birds is identified as risk factors of HPAI transmission in West Bengal, India18. Our findings 
align with a study conducted in China, which noted that many villages in coastal southern parts of China with 
duck farming systems are recognized as high-risk areas for AIV transmission. This also includes high-risk areas 
surrounding the Yangtze River delta, including major tributaries like Dongting Lake and Poyang Lake13,30,57. Si 
and Co-workers (2013) (Si et al., 2013) using logistic regression analysis revealed that HPAI H5N1 outbreaks 
increased with an increasing human population density combined with proximity to lakes or wetlands. The 
International Office of Epizootics emphasizes that regions with extensive wetlands and a high density of poultry 
in contact with wild birds represent significant risk areas58. Preventive efforts can be focused on such regions 
with measures include minimizing interactions between wild birds and domestic ducks by restricting domestic 
birds from foraging freely near wetland areas. Estimating the basic reproduction number (R0) is crucial for 
policymakers developing effective disease control strategies. The reported R0 range of 0.75 to 3.30 suggests the 
involvement of multiple primary sources in the outbreak, warranting further investigation18. Notably, the R0 
value calculated in our study closely aligns with estimates from the 2006 H5N1 outbreak in Romania, where 
R0 ranged between 1.95 and 2.68 across 161 affected villages59. Additionally, using Exponential Growth (EG) 
methods, R0 estimates for subtype H5N1 were between 1.65 and 2.20, while values for subtype H5N8 ranged 
from 0.03 to 1.5660.

The findings from the current study underscore the importance of targeted surveillance, risk mapping, and 
climate-informed strategies to mitigate outbreaks effectively, particularly in high-risk regions and seasons.

Materials and methods
As previously stated, the primary focus of this study is to investigate the geospatial dynamics of HPAI in relation 
to environmental variables, considering them as potential risk factors through the application of machine 
learning methodologies. This comprehensive framework for disease modelling is depicted in Fig.  5. Within 
this framework, we meticulously documented the processes of data collection, pre-processing, and feature 
engineering. Furthermore, we delineated the steps for conducting spatio-temporal analysis, established criteria 
for model implementation, and evaluated the best-fitting model. Hyper-parameter tuning was carried out to 
assess potential under fitting and overfitting of the models. Additionally, ensemble techniques were integrated 
to enhance model accuracy and sensitivity, culminating in the generation of risk maps intended for use in 
strengthening surveillance and disease management strategies. This framework significantly advanced our 
understanding of integrating modelling techniques in both analytical and predictive capacities. The modelling 
approach adopted for this study is thoroughly discussed in the subsequent sections and subsections.
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Study area
India, a country in South Asia lies between 8°4’ N and 37°6’ N latitude and 68°7’ E to 97°25’ E longitude north 
of the equator. The country has a total area of 3,287,263 sq. km and its climate is made up of six major subtypes, 
ranging from arid deserts in the west to alpine tundra and glaciers in the north to tropical rainforests in the 
southwest and islands. The country experiences four distinct seasons: winter (January to February), summer 
(March to May), the monsoon-rainy (June to September), and the post-monsoon (October to December). The 
Himalayas serve as a protective barrier against the glacial katabatic winds that originate in Central Asia. As a 

Fig. 5.  A comprehensive framework employed in the current study for HPAI disease modeling.
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result, northern India is warm or mostly moderately cool during the winter, the same phenomena cause India to 
be relatively hot during the summer. Even though the Tropic of Cancer, the line separating the tropics from the 
subtropics, runs through the centre of India, the entire nation is regarded as tropical country61.

Disease outbreaks and poultry population data
India possesses a substantial backyard poultry population, totalling 317.07 million, according to data from the 
20th Livestock Census conducted by the Department of Animal Husbandry and Dairying (DAHD) in India. The 
population data were collected at the district level. Information regarding HPAI disease outbreaks in backyard 
poultry over a span of 18 years (2006–2024) was sourced from the DAHD, India, and The World Organisation 
for Animal Health (OIE). This data includes details such as the onset of disease (month & year), number of 
outbreaks and the precise global positioning system (GPS) coordinates of outbreak locations.

Environmental risk factors data
This section outlines a comprehensive description of remote sensing data and meteorological data used in 
this study. Data on these risk factors were collected at a grid level over an 18-year period (2006–2024) and 
information is detailed in (Table 3) and visually represented in Figure S2.

Meteorological data
The meteorological variables utilized in this study were sourced from the Global Land Data Assimilation System 
(GLDAS version 2), available at https://ldas.gsfc.nasa.gov/gldas62. These variables include air temperature (k), 
potential evaporation rate (W/m2), rainfall precipitation rate (kg/m2/s), specific humidity (kg/kg), surface 
pressure (Pa), and wind speed (m/s). The data available at a spatial resolution of 0.25◦ × 0.25◦ in the network 
common data format (netCDF) were extracted. Subsequently, they were converted into CSV files using R Studio 
with packages ‘raster’, ‘rgdal’, ‘qdap’, ‘data.table’, and ‘ncdf4’ to facilitate further analysis.

Remote sensing data
The satellite data utilized in this study were sourced from the Moderate Resolution Imaging Spectroradiometer 
(MODIS)63. These include the enhanced vegetation index (EVI) and potential evapotranspiration (PET) with a 
16-day interval at a resolution of 500 m, land surface temperature (LST) with an 8-day interval at a resolution 
of 1-km, normalized difference vegetation index (NDVI) with a 16-day interval at a resolution of 500 m, and 
potential leaf area index (LAI) with a 16-day interval at a resolution of 500 m. These parameters were obtained 
from image products such as MOD16A2, MOD11A2, MOD13A1, and MOD15A2H, which were available in 
Hierarchical Data Format (HDF) file format with various spatial and temporal resolutions. To process these data, 
the R packages “gdalutils” and “modis” were utilized to extract information from HDF files and convert them 
into GeoTIFF files. Subsequently, the R package “raster” was employed to organize all variables into raster (grid) 
type files, with each predictor represented as a raster layer reflecting a specific variable of interest64.

Geographical parameters
The current study included data on waterbodies extracted from OpenStreetMap Data Extracts ​(​​​h​t​t​p​s​:​/​/​d​o​w​
n​l​o​a​d​.​g​e​o​f​a​b​r​i​k​.​d​e​/​a​s​i​a​/​i​n​d​i​a​.​h​t​m​l​​​​​)​. The data available in a zone-wise manner for India were downloaded in 
shapefile (shp.) format. These shapefiles were merged using the geopandas and pandas packages in Python. These 
shapefiles were used for mapping HPAI outbreaks incidence regions over all geographical parameters under 

Variable Source Units/Range Attribute Resolution

Meteorological parameters

Air temperature

GLDAS version 2
https://ldas.gsfc.nasa.gov/gldas

k netCDF 0.25⁰ ×0.25⁰

Potential evaporation rate W/m2 netCDF 0.25⁰×0.25⁰

Rainfall precipitation rate kg/m2/s netCDF 0.25⁰×0.25⁰

Specific humidity kg/kg netCDF 0.25⁰×0.25⁰

Surface pressure p.a. netCDF 0.25⁰×0.25⁰

Wind speed m/s netCDF 0.25⁰×0.25⁰

Soil moisture kg/m2 netCDF 0.25⁰×0.25⁰

Remote sensing parameters

LST

MODIS https://ladsweb.modaps.eosdis.nasa.gov

°C Raster 1 km × 1 km

NDVI -1 to 1 Raster 500 m × 500 m

EVI -1 to 1 Raster 500 m × 500 m

PET mm Raster 500 m × 500 m

LAI m2/m2 Raster 500 m × 500 m

Geographical parameters

Water bodies OpenStreetMap Data Extracts ​(​​​h​t​t​p​s​:​/​/​d​o​w​n​l​o​a​d​.​g​e​o​f​a​b​r​i​k​.​d​e​/​a​s​i​a​/​i​n​d​i​a​.​h​t​m​l​​​​​)​​ m Shape file NA

Table 3.  Environmental risk factors data and their sources used in the current study. netCDF network 
common data format, NA not available.
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study. QGIS was used to estimate the distance from actual disease outbreak regions to locations of waterbodies 
in an attempt to understand the influence of this parameter on HPAI incidence.

Data pre-processing and feature engineering
Data pre-processing is a crucial iterative process that transforms raw data into comprehensible and structured 
formats, such as CSV, ensuring its suitability for analysis. Raw datasets often contain inconsistencies, missing 
values, noise, and errors, which can obscure patterns and trends. To address these challenges, data pre-processing 
was systematically performed to eliminate noise, handle missing data, detect anomalies, and apply label encoding 
before initiating machine learning modelling. This structured approach encompassed four primary stages: 
data cleaning, integration, transformation, and reduction, ensuring both quality and relevance for subsequent 
analysis65. Initially, data cleaning involved identifying and correcting errors, handling duplicates, and managing 
outliers using visualization tools66. Missing values were treated through appropriate imputation methods. In 
the data integration stage, information from multiple sources was merged to create a unified dataset, resolving 
discrepancies in format and structure. Further, data transformation techniques, consists of normalization 
and standardization, were employed to scale numerical values for consistency, while categorical variables 
were converted using one-hot encoding and label encoding to enhance model compatibility65. By following 
this structured pre-processing methodology, we ensured that the dataset was optimized, error-free, and well-
prepared for efficient machine learning modelling, thereby improving prediction accuracy and computational 
efficiency.

Spatio-temporal endemicity
Additionally, we meticulously depicted the year-wise and month-wise cumulative outbreaks and accurately 
depicted the geographic spread of reported cases, detailing information down to the district level, with descriptive 
spatio-temporal endemicity providing critical insights for analyzing clustering patterns and seasonal variations 
to aid in surveillance and control measures67.

Spatial autocorrelation
This study used the local Getis–Ord Gi* index to identify local autocorrelation and find the differences of the 
neighbouring cell values for a geographic area. This index was effective in detecting “hot spots” demonstrating 
positive autocorrelation and “cold spots” indicating negative autocorrelation. The positive Z score indicates the 
presence of a hotspot; the negative Z score, a cold spot68.

Spatio-temporal cluster analysis
The scan statistic test was used to examine the spatio-temporal clustering of HPAI outbreaks using SaTScan 
software version 10.169. SaTScan employs moving windows of varying diameters to pinpoint spatial clusters 
within a study area. It also detects temporal clusters and delineates ellipses or circles with dynamically changing 
sizes across a three-dimensional study region. Clusters were reported for circles with observed values exceeding 
predicted values. For the SaTScan analysis, longitude and latitude coordinates at the district level were collected 
to conduct clustering on the dataset for each parameter associated with disease activity (case vs. control), 
encompassing both temporal and spatial attributes. The method was performed on a year-wise case dataset, 
using the total cases recorded for each epidemiological unit (district) for that year, while accounting for the 
overall population of each unit. The significance level was set at (p ≤ 0.05) for robust cluster identification.

Discerning climatic risk factors using linear discriminant analysis (LDA)
LDA is a machine learning algorithm based on Fisher’s linear discriminant theory, designed to differentiate 
between multiple classes. In this study, LDA was employed to thoroughly examine environmental risk parameters 
of HPAI, establishing a linear relationship among them. However, LDA has certain limitations: it assumes that 
variables follow a normal distribution and that classes have equal covariance matrices, which may not hold true 
in real-world datasets. Additionally, it is sensitive to outliers and performs poorly when data are not linearly 
separable. Despite these limitations, the linear relationships provide a strong basis for evaluating attribute 
impacts on computation and assessment. In this study, SaTScan was applied for detection of the significant and 
non-significant space-time clusters to identify risk occurrences. Then LDA was used to examine the variation of 
the environmental risk factors in these identified regions. The binary clustering status variable was assigned by 
the clustering status, where status = 1 for clustered regions and status = 0 for non-clustered regions. In the present 
study, an LDA was carried out with a pre-determined level of statistical significance of p ≤ 0.05 for all variables 
under study.

Predictive risk assessment through machine learning models
The study employs machine learning algorithms to accurately estimate the effect of significant environmental risk 
factors on disease prediction. The correlation between environmental risk parameters and disease was analysed 
to generate a risk map predicting the spatiotemporal occurrences of HPAI. A total of eleven machine learning 
models, including Naive Bayes (NB), Flexible Discriminant Analysis (FDA), Random Forest (RF), Support 
Vector Machine (SVM), Multiple Adaptive Regression Splines (MARS), Adaptive Boosting (ADA), Gradient 
Boosting Machine (GBM), Artificial Neural Network (NNET), Classification Tree Analysis (CT), Generalized 
Linear Models (GLM), and Generalized Additive Models (GAM), were trained and validated to ascertain the 
disease risk.
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Weighted outbreak score
For each district and selected month, we implemented a weighted scoring system based on historical outbreak 
occurrences. Districts with fewer than three outbreaks were assigned a score of 0 and those experiencing between 
3 and 6 outbreaks received a score of 1, while districts with more than six outbreaks were allocated a score of 
2. This scoring system provides a nuanced representation of outbreak risk, enabling finer-grained analyses in 
subsequent modelling efforts.

Pseudo-absence data generation
Pseudo-absence refers to locations assumed to lack a species or condition, used when actual absence data is 
unavailable. These points help balance datasets by representing areas unlikely to have the species based on 
environmental or spatial factors. A greater proportion of pseudo-absence to present data may influence model 
performance either in a positive or negative way. This will add biases to model inter-comparisons, for which 
incidence should be maintained constant at an intermediate level. To avoid bias in the comparison, pseudo-
absence data generation on HPAI were made. In line with past research, a incidence rate was set at 0.5 to 
ensure a balanced proportion of pseudo-absences in relation to presences in the dataset70–73. Additionally, we 
implemented an exclusion buffer of 10 km around occurrence points to prevent overlap between cells containing 
presence and pseudo-absence data74. Pseudo-absence points were randomly selected from the entire background 
area, with the exclusion of grid points located within the buffer zone.

Hyper parameterization
The ability of a model to provide accurate outputs for unseen input data, known as generalization, is a key 
objective in machine learning. A well-generalized model strikes a balance between under fitting and over fitting. 
Training and testing data play pivotal roles in regulating model performance. The training data enables the 
algorithm to discern patterns, cross-validation ensures accuracy, and the test data assesses predictive capability 
with new information. Over fitting occurs when a model excessively learns noise in the training data, impairing 
its performance on new data. Non-parametric and non-linear models, while more flexible, are more susceptible 
to over fitting75. Conversely, an under fit model cannot effectively model the training data or generalize to new 
data. Striking the right balance between memorization and generalization is a common challenge in machine 
learning algorithms. Regularization techniques were employed to mitigate over fitting76. In this study, all models 
were assessed for over fitting or under fitting, and to optimize coefficient estimation, p-values, and model 
performance metrics, the data was randomly split into a 70% training set and a 30% testing set. This approach 
ensures a robust evaluation of model performance.

Model evaluation and ensemble techniques
In this study, a comprehensive set of evaluation metrics including the Receiving Operating Characteristic (ROC) 
curve, True Skill Statistics (TSS), Cohen’s Kappa (Heidke Skill Score), Area Under the ROC Curve (AUC), F1 
score, error rate, accuracy, and logistic loss (LOGLOSS) were employed to assess the discriminative capacity 
of the machine learning models77,78. These metrics were utilized to evaluate the accuracy of prediction models 
based on the presence (1) or absence (0) of data79,80. In this study, the outcomes of separate forecasts from 
multiple model methods were aggregated using a Raster Stack approach78. Rather than relying on a single best 
model, it is recommended to combine predictions from different models, which provide scores ranging from 0 
to 1 and averaging these scores yielded the most accurate prediction77,81. The average model score was derived by 
considering models that met the criteria of kappa > 0.60, ROC > 0.70, TSS > 0.70, accuracy > 0.70, F1 score > 0.80, 
error rate < 0.20 and LOGLOSS < 0.70 for further assessment of disease risk82. This approach ensures a robust 
evaluation and aggregation of predictions for a more accurate risk assessment.

Transmission dynamics—estimation of basic reproduction number and vaccination coverage
The basic reproduction number (R0) serves as a critical measure depicting the rate of disease transmission. 
It signifies the average number of secondary cases produced by an infectious individual throughout its entire 
period of infectivity when introduced to a fully susceptible population. The significance of R0 lies in its threshold 
value: if R0 exceeds 1, there is an increased risk of disease propagation, whereas an R0 below 1 suggests a lower 
risk. Various approaches such as the Attack Rate (AR)83, Exponential Growth rate (EG)84, and Maximum 
Likelihood estimation (ML)85,86 were employed to gauge R0 and the method with maximum of the estimates 
was considered. Specific details regarding the methodology utilized can be found in similar study59, where 
similar techniques were employed for R0 estimation. The herd immunity threshold (HIT) (vaccination coverage) 
refers to the proportion of the poultry population that needs to be vaccinated against an infectious HPAI to be 
stabilized within the herd or population. When this threshold is reached through vaccination, each case leads 
to precisely one more case, causing the infection to become stable in the population of livestock, i.e., R0 = 1. The 
HIT was determined according to previous methods87–89 using the formula HIT = 1–1/ R0.

Statistical software
The statistical analyses, risk mapping, and disease forecasting were conducted utilizing R statistical software 
version 4.3 (R Foundation for Statistical Computing, Vienna, Austria; version 4.3). R served as a versatile platform 
for data mining, computation, and graphical representation. Various R packages including plyr90, dplyr91, rgdal92, 
raster64, data.Table93, openxlsx94, tmap95, sp96, spdep97, sf98, BAMM tools99, foreign100, geosphere101, MASS102, 
biomod2103, dsimo104, mgcv105, randomforest106, mda107, gbm108, and earth109 were instrumental in tasks such 
as data extraction, alignment, annotation, analysis, model fitting, and validation. Additionally, SaTScan v10.1.2, 
QGIS, and ArcGIS Pro 3.2.1 were used for spatial statistics and mapping.
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Conclusion
This comprehensive study on HPAI in India employs a multi-dimensional approach. The graphical framework 
of risk estimation of HPAI under the influence of significant environmental parameters by employing machine 
learning model is depicted in Figure S3. It begins with a vivid illustration of outbreak patterns at the district level, 
offering a detailed spatial overview of the disease incidence. Accurate geo-positioning ensures the reliability of 
the data, forming the basis for subsequent analyses to identify high-risk zones and transmission patterns. To 
address potential underreporting, the study generates data indicating instances of pseudo absence. Machine 
learning models, bolstered by a suite of environmental covariates and pseudo-absence data, are then employed. 
These models predict the probability of HPAI occurrence across India, providing a spatially explicit assessment 
of risk and enabling targeted intervention strategies. Additionally, the R0 transmission dynamics highlighted 
the potential for disease spread, aiding in strategic planning for prevention and control. This holistic approach 
not only enhances our understanding of HPAI dynamics but also lays a foundation for informed and effective 
disease management strategies in India. These findings underscore the importance of data-driven approaches 
for effective disease surveillance and resource allocation, supporting targeted interventions to mitigate public 
health risks associated with HPAI.

Data availability
The dataset and code used in this study are publicly available on GitHub at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​5​0​
8​2​8​8​4​. Researchers and interested parties can access and utilize the data for further analysis and validation. For 
any additional inquiries, correspondence should be addressed to S.K.P.
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