ELSEVIER

Contents lists available at ScienceDirect

Veterinary Parasitology

journal homepage: www.elsevier.com/locate/vetpar

Bovine babesiosis: An insight into the global perspective on the disease distribution by systematic review and meta-analysis

Siju Susan Jacob^{a,*}, Pinaki Prasad Sengupta^a, Krishnamoorthy Paramanandham^a, Kuralayanapalya Puttahonnappa Suresh^a, Jayantha Kumar Chamuah^b, Gudepalya Renukaiah Rudramurthy^a, Parimal Roy^a

- ^a ICAR- National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560064, India
- ^b ICAR-National Research Centre on Mithun, Medziphema-797 106, Nagaland, India

ARTICLE INFO

Keywords:
Bovine babesiosis
seroprevalence
infection prevalence
cattle
buffalo

ABSTRACT

Bovine babesiosis is continuing as a great threat to the livestock sector causing havoc production losses with significant morbidity and mortality. Being a tick-borne disease, the great complexity in the agent-host- vector relationship has severely hampered the sincere efforts towards the development of an effective vaccine against bovine babesiosis. In these circumstances, assessing the global scenario of disease prevalence is a prerequisite to strategize the available control measures. Keeping this in view, the objective of this study was to estimate the pooled prevalence of bovine babesiosis globally. The literature search was conducted to identify all relevant published articles reporting the prevalence of bovine babesiosis and a total of 163 studies were found eligible for final systematic review and meta-analysis. Meta-analysis was conducted using meta package of R software and summary estimates of the prevalence were calculated. Meta analysis of 81099 samples from 62 countires representing six continents revealed pooled global prevalence of bovine babesiosis as 29% (95% CI = 24%-34%) with estimated prevalence of active infection as 16% (95% CI = 13%-20%) and seroprevalence as 50% (95% CI = 45%-56%) using random effects model. Continent wise highest prevalence of bovine babesiosis in South America 64% (95% CI = 49%–77%) and lowest in Asia 19% (95% CI = 14%–25%). Highest prevalence was estimated with B. bigemina 22% (95% CI = 18%-27%) and least prevalence was recorded with B. divergens 12% (95% CI = 2%-46%). The pooled prevalence estimates generated in the study is revealing an increase in disease trend and the need for immediate planning of mitigation strategies paralleled with the development of early diagnostic methods to reduce the impact of disease throughout the world.

1. Introduction

Thenceforward the discovery of piroplasm in cattle blood in Romania (Babes, 1888), different species of *Babesia* are continue to emerge across the world with the enduring public health impact of babesiosis and considerable economic burden to the livestock sector in temperate to tropical countries. Bovine babesiosis, a tick-borne parasitic disease caused by intra-erythrocytic apicomplexan haemoprotozoan of the genus *Babesia* (Uilenberg, 1995), is imposing a significant burden on the global livestock sector with underestimated economic losses. In essence, bovine babesiosis is recognized as the second most common haemoprotozoan parasitic disease with wide geographic distribution of tick vectors augmented by focused change in the niche of ticks (Telford et al., 1993; Homer et al., 2000; Hunfeld et al., 2008).

Globally, bovine babesiosis (tick fever, cattle fever, Texas fever, red water disease, piroplasmosis) is caused by six species of the parasites; ie. *B. bigemina*, *B.bovis*, *B.divergens B.major*, *B. occultans* and *B. argentina*; *B.bigemina* (African red water) being the widely prevalent and *B.bovis* (Asiatic red water) being the highly pathogenic species (Ibrahim et al., 2013; Elsify et al., 2015). *B. bovis* and *B. bigemina* are distributed in Asia, Africa, Australia, Central and South America and Southern Europe (Criado-Fornelio et al., 2003; Altay et al., 2008; Silva et al., 2009), the important tick vector being *Rhipicephalus* (formerly *Boophilus*) *annulatus* and *Rh.* (*Bo.*) *microplus*, whereas *Rh.* (*Bo.*) *decoloratus* transmits only *B. bigemina* (Taylor et al., 2007). *B.divergens* is prevalent in central and northern Europe, Ireland, Great Britain and northern Africa (L'Hostis & Chauvin, 1999; Zintl et al., 2003; Edelhofer et al., 2004) with *Ixodus ricinus* (M' Fadyean & Stockman, 1911) as the vector with zoonotic

E-mail address: drsiju291@gmail.com (S.S. Jacob).

^{*} Corresponding author at: ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Ramagondanahalli, Yelahanka, Bengaluru, 560064. Karnataka. India.

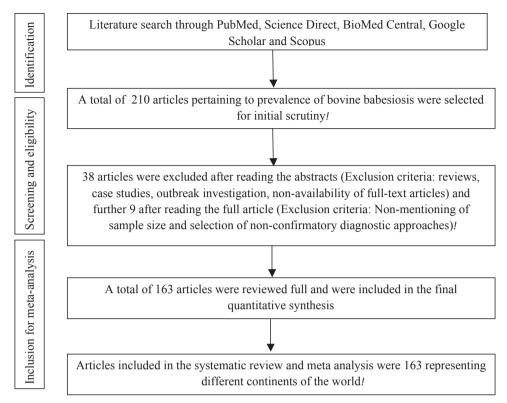


Fig. 1. Schematic diagram representing the literature search with exclusion/inclusion process for meta-analysis.

importance (Fitzpatrick et al., 1968). *Babesia major* is reported from European countries (L'Hostis & Seegers, 2002; Zintl et al., 2003; Garcia-Sanmartin et al., 2006) and is less documented due to its low pathogenicity with the vector *Haemaphysalis punctata*. The disease is manifested by haemolytic anemia and fever, with occasional hemoglobinuria and death. Besides, acute infection with *B. bovis* may result in respiratory and neurological symptoms via sequestration of infected RBCs in the capillary beds (Everitt et al., 1986). Delayed treatment of bovine babesiosis often renders in poor prognosis.

Historically in the year 1888, Victor Babes investigated disease outbreaks in cattle with hemoglobinuria in Romania and was the first to detect piroplasm in the blood of cattle. After 5 years, elegant studies by Smith and Kilborne (1893) revealed that *B. bigemina* transmitted by *R. annulatus* is responsible for bovine babesiosis in susceptible cattle. M'Fadyean & Stockman M'Fadyean & Stockman (1911) first described *B. divergens* in the cattle blood who named it as *Piroplasma divergens*. The zoonotic potential of *Babesia* is noteworthy with the first confirmed case of human babesiosis was reported in 1956 with *B. divergens* as the causative organism (Skrabalo and Deanovic, 1957).

The journey towards the development of an effective vaccine against bovine babesiosis is obstacled by the ever-increasing complexity of the agent-vector-host-environment association accelerated by global climate change. Control of bovine babesiosis by adopting tick control measures is challenged by the concerns regarding the rapid emergence of acaricidal resistance and the threat of acaricide residues in the food chain. This dreadful situation demands a thorough understanding of the disease status in different geographical areas that will help to allocate the available resources to high-risk areas thereby the emergence of acaricide resistance that might have occurred due to extensive and indiscriminate application of acaricides can be slow down. Keeping in view of this, in the present study efforts are being taken to estimate the status of the disease in different countries in terms of pooled prevalence by systematic review coupled with meta-analysis.

2. Materials and Methods

2.1. Data sources and search strategy

The Prisma protocol (PRISMA, http://www.prisma-statement.org) was followed in conducting the study (Supplemenary file 1). The literature search was conducted to identify all published studies reporting the prevalence of bovine babesiosis across the globe using comprehensive combinations of keywords. The literature search was performed using the electronic databases including PubMed, Science Direct, BioMed Central, Google Scholar and Scopus. Further, reviews and the reference lists from the retrieved articles were manually searched to identify additional pertinent studies. The literature search was independently conducted by two experienced researchers. Those studies reporting the prevalence of bovine babesiosis were included for the final systematic review and meta-analysis. The literature pertaining to the bovine babesiosis was restricted to 1967 to 2019 based on the literature availability and the retrieval language was limited to English.

2.2. Eligibility criteria

The studies were restricted to cross-sectional and longitudinal studies in cattle and buffalo about the prevalence of bovine babesiosis across the world. The collected literatures were checked rigorously for duplicates and were removed. The inclusion criteria for consideration of meta-analysis for each study was those mentioning a) the number of animals screened b) the number of animals infected (either organism or antibodies) c) the use of standard methods like blood smear examination and molecular methods to detect the organism and/or serological techniques like ELISA, IFAT and capillary tube agglutination test for detection of antibodies and d) the year of study. The literature mentioning outbreak investigations, case reports, reviews and clinical trials were excluded from the study.

Veterinary Parasitology 283 (2020) 109136

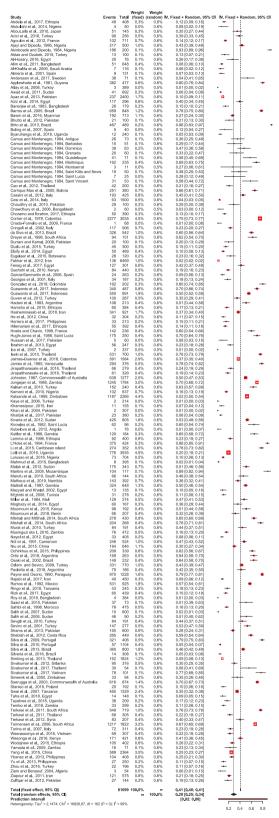


Fig. 2. Forest plot showing the details of the studies with the prevalence estimates.

2.3. Data extraction

The relevant literature were retained based on the mentioned criteria and the results from the individual studies were extracted independently to a predesigned data extraction excel sheet. The extracted

data from the selected literature were the year of study, study area, sample size, number of animals positive for *Babesia* species, diagnostic method used, species of *Babesia* detected, author's name, article title and year of publication. The overall prevalence estimate of bovine babesiosis for each study was determined by selecting the highest prevalence when different diagnostic methods were employed.

2.4. Meta-analysis

Meta-analysis for prevalence studies aid in generating a weighted average proportion of prevalence of various studies. This will help to obtain a more precise estimate of prevalence from multiple studies thereby providing a better direction for future work. The meta-analysis on bovine babesiosis was conducted by using R Open Source Software version 3.2.5. The R packages used for meta-analysis were Metafor and Meta. The effect model was chosen depending on the percentage of heterogeneity (I2). Because substantial heterogeneity was expected, random effect model was used to arrive at a pooled estimate of prevalence of bovine babesiosis. The possibility of publication bias was assessed by graphical analysis funnel plot with the y-axis showing the Standard Error (SE) of each study, with larger studies (which thus have a smaller SE) plotted on top of the y-axis; and the x-axis showing the effect size (Hedges' g) of each study. In the absence of publication bias, the studies with high precision concentrates along the line of average, whereas those with low precision distribute evenly on either sides of the average line, creating generally a funnel shaped scatter (Egger et al., 1997). Deviance from this shape indicates publication bias. Further, funnel plot asymmetry was checked by the Rank correlation method, linear regression test and Egger's test. Based on the P-value of each test Null hypothesis was either accepted or rejected. The Trim-and-fill method was used to adjust for funnel plot asymmetry. To determine the percentage of variation across studies that are due to heterogeneity rather than chance. Cohran O test (chi-square test for heterogeneity) as well as the heterogeneity I2 (Higgins I2) statistic was calculated. To quantify the heterogeneity, I2 values of 25%, 50% and 75% were considered as low, medium and high heterogeneity (Higgins and Thompson, 2002; Higgins et al., 2003). The H value was also calculated to summarize the impact of heterogeneity. Since H statistic that has no upper limit, it will allow tracking changes in heterogeneity with high authenticity when the number of studies is less. The Forest plot was utilized for making the graphical representation of the data. The method used for the study was inverse with the logit transformation. Restricted maximum-likelihood estimator was used to determine between study variance τ^2 . The prevalence estimates for bovine babesiosis was expressed as percentage with Confidence Interval (CI) and Prediction Interval (PI) at 95% level. The Clopper-Pearson confidence interval was employed for individual studies. Subgroup analysis was conducted based on species affected, diagnostic method used, continents of the world, and animal wise for determining the heterogeneity in each group and their comparison. Besides, prevalence based on antigen/organism detection (blood smear examination and molecular techniques) termed as infection prevalence (status of active infection) and based on antibody detection (seroprevalence) was estimated for each subgroup.

3. Results

3.1. Details of studies

After initial scrutiny of the article titles for those reporting the prevalence of bovine babesiosis and exclusion of those irrelevant, 210 articles were retrieved for further appraisal. Of these, 38 were excluded after reading the abstracts and further 9 after reading the full article. This resulted in a total of 163 studies to perform a systematic review and meta-analysis. The inclusion and exclusion criteria followed for meta-analysis of the prevalence of bovine babesiosis is depicted in

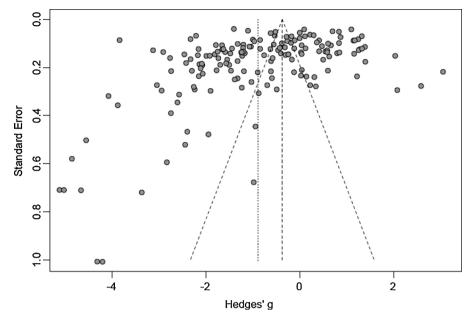


Fig. 3. Funnel plot representing publication bias.

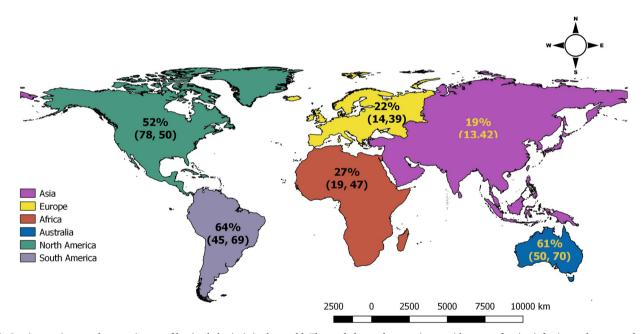


Fig. 4. Continent-wise prevalence estimates of bovine babesiosis in the world. The pooled prevalence estimate with status of active infection and seroprevalence are provided in the bracket for each continent.

Fig.1. The study was conducted based on the systematic review of the prevalence of bovine babesiosis from 1967 to 2019.

3.2. Meta-analysis of prevalence of bovine babesiosis

The study covered six continents (Asia, Africa, Australia, Europe, North America and South America) and 62 countries. The total number of studies included for meta-analysis was 163 with 81,099 samples for the period 1967-2019. The meta-analysis indicated that variability was high between studies ($\tau^2=2.1474$; heterogeneity $I^2=99\%$ with heterogeneity chi square = 16826.87, degree of freedom = 162, H = 10.19 with P < 0.001). Individual study prevalence estimates ranged from 1% to 96% with the overall random pooled prevalence of 29% (95% CI: 25-34%, PI: 2-88%). The random pooled infection prevalence was found to be 16% (95% CI: 13-20%, PI 10-65%) based on

114 studies whereas the seroprevalence was 50% (95% CI: 45-56%, PI: 13-87%) based on 72 studies. Studies weighted approximately equal with weights on individual studies ranging from 0.4% to 0.6%. Fig. 2 represents the forest plot derived from meta-analysis. Funnel plot asymmetry was determined by rank correlation test (z value: -3.005, P = 0.003), Linear regression test (t value: -3.7681, P = 0) and Eggers test (Intercept = -5.549, P = 0) which indicated substantial asymmetry in the funnel plot (null hypothesis is rejected) which in turn reveals the likely presence of publication bias (Fig. 3).

3.2.1. Subgroup meta-analysis

Subgroup analyses were conducted for different periods (1967-2000, 2001-2010, 2011-2015 and 2016-2019), six continents, animals affected (cattle and buffalo), species of parasite (*B.bigemina, B.bovis, B.divergens, B.major* and *B.occultans*), diagnostic method used (blood

 Table 1

 Infection and sero-prevalence of bovine babesiosis.

SI. No	Authors				Prevalence				
		Country	Total	Infection	Sero-prevalence	Continent	Total	Infection	Sero prevalence
1.	Abdullah-al-Mahmud et al., 2015	Bangladesh	4%	3%	15%	Asia	19%	13%	42%
2.	Alim et al., 2011								
3.	Banerjee et al., 1983								
4.	Chawdhury et al., 2006								
5.	Roy et al., 2018		2401						
6.	He et al., 2012	China	21%	19%	25%				
7.	Niu et al., 2015								
8. 9.	Yang et al., 2015 Guswanto et al., 2017 ^a	Indonesia	63%	70%	63%				
10.	Guswanto et al., 2017 Guswanto et al., 2017	muonesia	0370	7070	0370				
11.	Fakhar et al., 2012	Iran	11%	11	_				
12	Hasheminasab et al., 2018	nun	1170						
13.	Khamesipour, 2015								
14.	Rajabi et al., 2017								
15.	Ziapour et al., 2011								
16.	AbouLaila et al., 2010	Japan	35%	35%	_				
17.	Bawm et al., 2016	Myanmar	27	27	_				
18.	Ayaz et al., 2013	Pakistan	15	15	_				
19.	Bhutto et al., 2012								
20.	Chaudhry et al., 2010								
21.	Durrani and Kamal, 2008								
22.	Hussain et al., 2017								
23.	Khan et al., 2004								
24.	Khattak et al., 2017								
25.	Saad et al., 2015								
26.	Shams et al., 2013								
27.	Zulfiqar et al., 2012								
28.	Herrera et al., 2017	Philippines	25	25	-				
29.	Ochirkhuu et al., 2015								
30.	Ybanez et al., 2013								
31.	Yu et al., 2013	0 1: 4 1:		_					
32.	Al-Khalifa et al., 2009	Saudi Arabia	6	6	-				
33.	Sivakumar et al., 2012	Sri Lanka	35 32	- 25	35 40				
34.	Terkawi et al., 2012	Syria	32 29		58				
35. 36.	Cao et al., 2012 Iseki et al., 2010	Thailand	29	18	38				
37.	Jirapattharasate et al., 2016a								
38.	Jirapattharasate et al., 2016b								
39.	Simking et al., 2013								
40	Sivakumar et al., 2018								
41.	Terkawi et al., 2011								
42.	Acici et al., 2016	Turkey	17	7	33				
43.	Aktas and Ozubek, 2015				-				
44.	Atlay et al., 2008								
45.	Duzlu et al., 2015								
46.	Guven et al., 2012								
47.	Ica et al., 2007								
48.	Kalkan et al., 2010								
49.	Kaya et al., 2006								
50.	Murat et al., 2010								
51.	Ozlem and Sevinc, 2009								
52.	Sevgili et al., 2010								
53.	Sevinc et al., 2001								
54.	Zhou et al., 2016								
55.	Sivakumar et al., 2018	Vietnam	50	33	77				
56.	Weerasooriya et al., 2016								

Table 1 (continued)

I. No	Authors				Prevalence				
		Country	Total	Infection	Sero-prevalence	Continent	Total	Infection	Sero prevaleno
57.	Ziam and Benaouf, 2004	Algeria	6	6	_	Africa	27%	19%	47%
58.	Kubelova et al., 2012	Angola	1	1	_				
59	Moumouni et al., 2018	Benin	32	32	_				
0.	Eygelaar et al., 2015	Botswana	23	23	_				
1.	Ndi et al., 1991	Cameroon	47	47	_				
2.	Al-Hosary, 2016	Egypt	19	16	29				
3.	Aziz et al., 2015								
54.	Elsify et al., 2014								
55.	Fereig et al., 2017								
66.	Ibrahim et al., 2013								
57.	Mazyad and Khalaf, 2002								
8.	Moghazy et al., 2014								
9.	Nayel et al., 2012								
'0.	Rizk et al., 2017								
1.	Taha et al., 2018								
2.	Abdela et al., 2017	Ethiopia	17	17	-				
73.	Choramo and Ibrahim, 2017								
'4.	Hamsho et al., 2015								
'5.	Hilemariam et al., 2017								
'6.	Lemma et al., 1996								
7.	Wodajnew et al., 2015	0. 1:	0.1						
'8.	Kuttler et al., 1988	Gambia	21	1	57				
'9.	Mattioli et al., 1997	**	0.6		20				
30.	Gachohi et al., 2010	Kenya	36	51	29				
31.	Moumouni et al., 2015								
32.	Wesonga et al., 2016	Mali	47		477				
33.	Miller et al., 1984	Mali	47	-	47				
34.	Sahibi et al., 1998	Morocco	18	14	22				
35.	Martins et al., 2008	Mozambique	89	89	-				
36. 27	Matheus et al., 2018	Namibia Nigoria	36 16	-	36				
37.	Abdullahi et al., 2014	Nigeria	16	12	76				
38. 39.	Aliphanda and Dinashy 1084								
90.	Akinboade and Dipeolu, 1984 Kamani et al., 2010								
91.	Lorusso et al., 2016								
92.	Dreyer et al., 1998	South Africa	66	71	64				
93.	Marufu et al., 2010	South Africa	00	/1	04				
94.	Mtshali and MtShali, 2014								
95.	Mtshali et al., 2014								
96.	Terkawi et al., 2011								
97.	Tonnensen et al., 2006								
98.	Awad et al., 2011	Sudan	21	3	52				
99.	Kivaria et al., 2012	Suddir	21	J	32				
100.	Malak et al., 2012								
.01.	Salih et al., 2007								
102.	Salih et al., 2008								
103.	Ringo et al., 2018	Tanzania	26	18	35				
04.	Swai et al., 2007	Tunzumu	20	10	33				
.05.	M'ghirbi et al., 2008	Tunisia	11	11	_				
.06.	Byaruhanga et al., 2016	Uganda	13	13	_				
107.	Lolli et al., 2016	- 0		-					
107.	Tayebwa et al., 2018								
.09.	Jongejan et al., 1988	Zambia	26	16	70				
10.	Musinguzi eta l., 2016								
11.	Tembo et al., 2018								
12.	Yamada et al., 2009								
13.	Katsande et al., 1999	Zimbabwe	44	35	52				
14.	Smeenk et al., 2000								
15.	Camus and Montenegro, 1994	Antigua	36	_	36	North America	52	78	50
16.	Camus and Montenegro,1994	Barbados	29	_	29				
17.	Shebish et al., 2012	Costa Rica	19	3	59				
18.	Camus and Montenegro, 1994	Dominica	47	_	47				
	Camus and Montenegro, 1994	Grenada	33	_	33				
.19.	Camus and Montenegro, 1994	Guadeloupe	58	-	58				
	<u>.</u>	Martinique island	69	_	69				
20.	Camus and Montenegro, 1994	•	27	_	27				
20. 21.	Camus and Montenegro, 1994 Camus and Montenegro, 1994	Montserrat							
20. 21. 22.	<u>.</u>	Montserrat Mexico	39	24	57				
119. 120. 121. 122. 123.	Camus and Montenegro, 1994			24 -	57 38				
.20. .21. .22. .23.	Camus and Montenegro, 1994 Ramos et al., 1992	Mexico	39						
20. 21. 22. 23. 24.	Camus and Montenegro, 1994 Ramos et al., 1992 Camus and Montenegro, 1994	Mexico Saint Kitts and Nevis	39 38	-	38				
20. 21. 22. 23. 24. 25.	Camus and Montenegro, 1994 Ramos et al., 1992 Camus and Montenegro, 1994 Camus and Montenegro, 1994	Mexico Saint Kitts and Nevis	39 38	-	38				
20. 21. 22. 23. 24. 25.	Camus and Montenegro, 1994 Ramos et al., 1992 Camus and Montenegro, 1994 Camus and Montenegro, 1994 Hugh-Jones et al., 1988	Mexico Saint Kitts and Nevis	39 38	-	38				

Table 1 (continued)

SI. No	Authors				Prevalence				
		Country	Total	Infection	Sero-prevalence	Continent	Total	Infection	Sero prevalence
130.	Hadani et al., 1983	Argentina	53	42	58	South America	64%	45%	69%
131.	Ortiz et al., 2018								
132.	Paoletta et al., 2018								
133.	Carrique et al., 2000	Bolivia	66	_	66				
134.	Barros et al., 2005	Brazil	59	50	63				
135.	Brito et al., 2013,								
136.	da Silva et al., 2013								
137.	Osaki et al., 2002								
138.	Silva et al., 2013								
139.	Silveria et al., 2016								
140.	Corrier et al., 1978	Colombia	66	25	77				
141.	Gonzalez et al., 2018								
142.	Jaimes-Duenez et al., 2018								
143.	Applewhaite et al., 1981	Guyana	80	_	80				
144.	James et al., 1985	Venezuela	35	7	78				
145.	Payne and Osorio, 1990	Paraguay	79	_	79				
146.	Agoulon et al., 2012	France	32	27	33	Europe	22%	14%	39%
147.	Criado-Fornelio et al., 2009								
148.	L'Hostis and Chavin, 1999								
149.	L'Hotis et al., 1994								
150.	Cassini et al., 2012	Italy	10	2	35				
151.	Ceci et al., 2014								
152.	Cringoli et al., 2002								
153.	Georges et al., 2001								
154.	Torina et al., 2007								
155.	Silva et al., 2009	Portugal	31	27	79				
156.	Silva et al., 2010								
157.	Staniec et al., 2018	Poland	10	10	_				
158.	Almeria et al., 2001	Spain	9	9	_				
159.	Buling et al., 2007								
160.	Garcia-Sanmartin et al., 2006								
161.	Andersson et al., 2017	Sweden	54	54	_				
162.	Johnston, 1967	Commonwealth of Australia	61	50	70	Australia	61%	50%	70%
163.	Sserugga et al., 2003								

smear examination, molecular and serological methods) and for different countries. Continent wise analysis revealed highest prevalence of bovine babesiosis in South America 64% (95% CI = 49%-77%), followed by Australia 61% (95% CI = 4%-78%), North America 52% (95% CI = 43%-61%), Africa 27% (95% CI = 21%-35%), Europe 22% (95% CI = 11%-39%) and Asia 19% (95% CI = 14%-25%) with highest number of studies reported from Africa (n = 58) followed by Asia (n = 56) (Fig.4). The pooled prevalence estimate was high during the 1967-2000 period 55% (95% CI = 47%-63%) with 33 studies compared to 2001-2019 period 23% (95% CI = 14%-32%) with 132 studies which is also showing a decreasing trend in prevalence. However, the subgroup analysis involving recent years (2016-2019) was showing an increase in the prevalence 25% (95% CI = 18%-32%) that may be a threat in the future. Subgroup analysis based on species of parasite revealed the highest prevalence with B. bigemina 22% (95% CI = 18%-27%), followed by B. bovis 20% (95% CI = 16%-25%), B. occultans 16% (95% CI = 7%-33%), B. major 15% (95% CI = 2%-55%) and lowest with B. divergens 12% (95% CI = 2%-46%). The overall prevalence of babesiosis in cattle was higher 29% (95% CI = 24%-34%) compared to that of buffaloes 22% (95%) CI = 13%-35%). On analysis of different diagnostic techniques employed, the highest prevalence was estimated with serology 50% (95% CI = 45%-56%) followed by nucleic acid-based techniques 19% (95% CI = 15%-24%) and blood smear examination 11% (95% CI = 8%-15%). The summarized results on meta-analysis of bovine babesiosis are mentioned in Tables 1 and 2 (References are enlisted in supplementary file 2).

4. Discussion

Bovine babesiosis impedes the development and sustainability of

the livestock sector worldwide. Meta-analysis is an essential tool to combine the results from two or more studies conducted by different individuals to provide a single numerical value of the estimatewith high statistical power. This report was from the analysis of data obtained through a systematic review of scientific publications on the prevalence of bovine babesiosis between 1967 and 2019. The meta-analysis showed high heterogeneity with I² values more than 90% which indicates that 90% of the total variability among effect sizes is caused not by sampling error, but by true heterogeneity between studies (Higgins and Thompson, 2002). The asymmetry of the funnel plot was suggestive of publication bias with higher heterogeneity. The observed heterogeneity could be attributed to different study settings and study populations. Heterogeneity was, however, still very high within the subgroups, hence these results should be interpreted cautiously.

In the present study, meta-analysis revealed a high pooled prevalence estimate during 1967-2000 (55%) which further showed a decrease in trend during 2001-2010 (21%) and during the last five years (2016-2019) the prevalence was gradually increased to 25%. This trend indicates the effective acaricidal usage followed by a period of emergence of acaricide resistance that might have hindered the tick control programs. It is noteworthy that bovine babesiosis has been eradicated from the U.S. by eliminating the R. annulatus and R. microplus (cattle fever ticks) populations through efforts of the Cattle Fever Tick Eradication Program (CFTEP) established in 1906 and the U.S. was declared free of cattle fever ticks in 1943. It is worth mentioning that the bovine babesiosis is a potentially eradicable disease that can only be achieved by wiping out the tick vectors from a targeted geographical region. The increase in prevalence may also be due to the extension of the niche of tick-borne diseases due to the accelerated rate of global warming. The seasonality in occurrence of bovine babesiosis is worth mentioning with the peak incidence being during summer. It has been

Table 2 : Summary of meta-analysis of prevalence of bovine babesiosis

Parameters	Number of studies	Total samples	Pooled prevalence (%) [confidence interval at 95% level	Prediction interval (%) at 95% level	Heterogeneity analysis							
					Quantifying Heterogeneity				Test of Heterogeneity			
					I ² Value (%) with range	Tau	square value	H value with range		square rogeneity stics	DF	P Valu
Bovine babesiosis in World	163	81099	29 (25-34)	2-88	99.0 (99.0-	2.14	74	10.19 (9.92- 10.48)	1682	26.87	162	0
Infection Prevalence	114	53043	16 (13-20)	10-65	99.1) 98.5 (98.4- 98.7)	1.98	22	8.29 (7.98- 8.61)	7763	3.88	113	0
Seroprevalence	72	36109	50 (45-56)	13-87	98.5 (98.4- 98.7)	0.87	59	8.22 (7.84- 8.62)	4797	7.64	71	
Subgroup analysis	s by period 33	16289	55 (47-63)	15-90	98.1 (97.8-	98.4)	0.8682	7.25 (6.71-	1682	2.46	32	0
2000) Period II (2001- 2010)	39	14824	21 (13-32)	1-92	98.8 (98.6-	98.9)	3.3277	7.84) 9.01 (8.47- 9.58)	308	1.75	38	0
2010) Period III (2011- 2015)	50	31157	24 (18-32)	2-85	99.1 (99-99	0.2)	2.0349	10.75 (10.24- 11.28)	5660	0.36	49	0
Period IV (2016- 2019)	42	18360	25 (18-32)	3-80	98.2 (98.0-	98.4)	1.5380	7.47 (6.99- 7.99)	2290).58	41	0
Subgroup analysis Asia	s by continents											
Total Prevalence	56	29846	19(14-25)	1-81	98.8 (98.6-	98.9)	2.0578	9.0 (8.55- 9.48)	4458	3.6	55	0
Infection Prevalence	40	22223	13 (9-18)	1-65	98.2(97.9-	98.4)	1.5298	7.37 (6.88- 7.90)	2118	3.76	39	0
Seroprevalence	16	7623	42 (28-56)	5-91	98.5(98.1-9	8.8)	1.4504	8.12 (7.31- 9.02)	989.	46	15	< 0.0
Africa Total Prevalence	58	28881	27 (21-35)	2-85	98.9 (98.8-9	99.0)	1.8010	9.48 (9.03-	5122	2.45	57	0
Infection Prevalence	37	17758	19 (13-26)	2-77	98.8(98.6-9	8.9)	1.6614	9.95) 9.11 (8.55- 9.70)	2985	5.02	36	0
Seroprevalence	21	11123	47 (36-57)	10-88	98.1(97.8-; 98.5)		0.9746	7.35 (6.67- 8.10)	1079	9.86	20	< 0.0
Australia Total Prevalence	2	2151	61(4-78)		98.9 (97.7-	00 4)	0.3730	9.35	87.4	2	1	< 0.0
Infection Prevalence	1	1277	50 (47-53)	-	-	JJ.4)	-	-	-	3	-	-
Seroprevalence	1	874	70 (67-73)	-	-		-	-	-		-	-
Europe Total Prevalence	16	6575	22 (11-39)	1-91	99.1 (98.9-	99.2)	2.6158	10.32 (9.44-	1598	3.20	15	0
Infection	10	3980	14 (5-33)	0-91	99.0(98.7-9	9.2)	2.9492	11.29) 9.95 (8.84-	891.	50	9	< 0.0
Prevalence Seroprevalence	6	2595	39 (20-62)	2-96	99.0(98.6-	99.3)	1.3638	11.20) 9.98 (8.53- 11.69)	498.	31	5	< 0.0
North America Total Prevalence	15	2784	52 (43-61)	20-82	90.3 (85.7-	93.4)	0.4255	3.21 (2.64- 3.90)	144.	29	14	< 0.0
Infection Prevalence	1	352	78 (73-82)	-	-		-	-	-		-	-
Seroprevalence	14	2432	50 (42-58)	21-79	86.2(78.4-9	1.1)	0.3333	2.69 (2.15- 3.36)	94.1	2	13	< 0.0
South America Total Prevalence Infection	16 4	11163 2567	64(49-77) 45 (7-90)	10-97 0-100	98.9 (98.7- 99.1(98.7-		1.5956 6.1855	9.51 (8.65-10.4 10.80 (8.91- 1		1355.27 349.95	15 3	< 0.0 < 0.0
Prevalence Seroprevalence	12	8596	69 (62-76)	39-89	97.4(96.6-9	8.1)	0.2889	6.24 (5.39- 7.2	22)	428.19	11	< 0.0
Subgroup analysis	s by species of anima	ıl										
Cattle Total Prevalence	158	78625	29 (24-34)	2-89	99.0 (99.0-	99.1)	2.2790	10.29 (10.01-1	0.58)	16614.59	157	0

Table 2 (continued)

Parameters	Number of studies		Total samples	Pooled prevalence (%) [confidence interval at 95% level	Prediction interval (%) at 95% level	Heterogeneity analysis							
						Quantifying Hete	Test of Heterogeneity						
						I ² Value Tau (%) with range	square value	H value with range	Chi square heterogeneity statistics	DF	P Value		
Infection	114		43546	16 (12-20)	1-75	98.5 (98.4-98.7)	1.9822	8.29 (7.98; 8.61	7763.88	113	0		
Prevalence Seroprevalence	70		36173	48 (41-54)	8-90	98.7 (98.6-98.8)	1.3022	8.90 (8.49- 9.32	2) 5459.85	69	0		
Buffalo													
Total Prevalence	12 9		2834	22 (13-35)	02-77	97.1 (96.1-97.9) 92.0 (87.1-	1.1233 0.9289	5.88 (5.05-6.83)	•	11 8	< 0.01 < 0.01		
Infection Prevalence	9		1187	17 (9-28)	2-70	95.1)	0.9289	3.55 (2.79- 4.51	1) 100.62	0	< 0.01		
Seroprevalence	3		1647	42 (22-65)	0-100	98.1(96.5-99.0)	0.6908	7.23(5.33- 9.81)) 104.62	2	< 0.01		
Subgroup analysis Blood smear	by diagno	stic metho	od 29064	11 (8-15)	1-60	98.7 (98.5-98.8)	1.5252	8.69 (8.19-9.21) 3319.24	41	0		
examination													
Molecular methods	82		27106	19 (15-24)	1-78	98.2 (98-98.3)	1.8676	7.4 (7.05-7.76)	4435.39	81	0		
Serology	72		36109	50 (45-56)	13-87	98.5 (98.4-98.7)	0.8759	8.22 (7.84-8.62)) 4797.64	71	0		
Subgroup analysis Turkey	by country	7											
Total Prevalence	13	3748		17 (7-37)	0-94	96.7 (95.5-97.6)	3.5189	5.51 (4.74-6.40)) 363.76	12	< 0.01		
Infection	10	2871		7 (3-15)	0-69		1.9665	5.27(4.40-6.30)		9	< 0.01		
Prevalence	7	0005		00 (14 (1)	1.07	00.7(00.4.06.0)	2.2639	0.00(0.07 5.15	04.00	_	. 0.01		
Seroprevalence	7	2235		33 (14-61)	1-97	93.7(89.4- 96.2)	2.2639	3.98(3.07- 5.15)) 94.98	6	< 0.01		
Thailand Total Prevalence	7	3691		29 (15-50)	2-91	99.3 (99.1-99.5)	1 3530	12.16 (10.72-	886.65	6	< 0.01		
Total Frevalence	,	3091		29 (13-30)	2-91	99.3 (99.1-99.3)	1.3339	13.79)	880.03	U	< 0.01		
Infection Prevalence	6	2787		18 (12-26)	4-52	94.7(91.0-96.9)	0.2719	4.35 (3.32-5.68)	94.47	5	< 0.01		
Seroprevalence	4	1160		58 (31-81)	1-100	98.7(97.9-99.1)	1.3107	8.66 (6.93-10.8	3) 225.12	3	< 0.01		
South Africa													
Total Prevalence	6	3534		66(57-74)	32-89	92.5 (86.4-95.9)	0.2172	3.65 (2.71-4.92)		5	< 0.01		
Infection Prevalence	2	698		71 (8-80)	-	90.1(63.5- 97.3)	0.1389	3.17	10.05	1	< 0.01		
Seroprevalence	4	2836		64 (51-75)	12-96	94.7(89.4- 97.3)	0.2874	4.34(3.08- 6.11)) 56.39	3	< 0.01		
Pakistan													
Total Prevalence	10	4264		15(7-27)	1-75	96.3 (94.6-97.4)	1.4058	5.16 (4.31-6.19)) 240.02	9	< 0.01		
Infection	10	4264		15(7-27)	1-75	96.3 (94.6-97.4)	1.4058	5.16 (4.31-6.19)) 240.02	9	< 0.01		
Prevalence Seroprevalence	-	-		-	-	-	-	-	-	-	-		
Haan da													
Uganda Total Prevalence	3	4384		13 (5-27)	0-100	92.6 (81.7-97.0)	0.6311	3.68 (2.34- 5.8)	27.11	2	< 0.01		
Infection	3	4384		13 (5-27)	0-100	92.6 (81.7-97.0)		3.68 (2.34- 5.8)		2	< 0.01		
Prevalence													
Seroprevalence	-	-		-	-	-	-	-	-	-	-		
Bangladesh													
Total Prevalence	5	1666		4 (2-11)	0-66	91.1 (82.1-95.5)		3.35 (2.37-4.74)		4	< 0.01		
Infection Prevalence	4	1487		3 (1-7)	0-68	89.0(74.6- 95.3)	0.7477	3.02(1.98- 4.59)) 27.35	3	< 0.01		
Seroprevalence	1	179		15 (10-21)	-	-	-	-	-	-	-		
Sudan													
Total Prevalence	5	2530		21 (5-60)	1-100	99.0 (98.7-99.3)	3.7807	10.26 (8.63-12.	•	4	< 0.01		
Infection Prevalence	2	1292		3 (1-11)	-	92.6(75.0- 97.8)	0.7976	3.67	13.50	1	< 0.01		
Seroprevalence	3	1238		52 (49-55)	35-69	0.0(0.0-40.2)	0	1.00 (1.00- 1.29	9) 0.35	2	0.84		
Philippines													
Total Prevalence	4	1210		25 (10-51)	0-99	98.5 (97.6- 99.0)	1.2676	8.10 (6.42-10.2	3) 196.98	3	< 0.01		
	4	1210		25 (10-51)	0-99	99.0) 98.5 (97.6-	1.2676	8.10 (6.42-10.2	3) 196.98	3	< 0.01		
Infection Prevalence	7	1210				99.0)							

Egypt

Table 2 (continued)

Parameters	Numbe	r of studies	Total	Pooled	Prediction	Heterogeneity a	nalysis				
			samples	prevalence (%) [confidence	interval (%) at 95% level	Quantifying Hete	rogeneity	Test of Heterogeneity			
				interval at 95% level		I ² Value Tau (%) with range	square value	H value with range	Chi square heterogeneity statistics	DF	P Value
Total Prevalence	10	2703		19 (13-29)	3-63	96.3 (94.8-97.4)	0.6536	5.23 (4.37-6.26)		9	< 0.01
Infection Prevalence	9	2402		16 (10-24)	3-56	95.7 (93.7- 97.1)	0.5737	4.85 (3.97-5.92)		8	< 0.01
Seroprevalence	4	1002		29 (21-40)	4-78	90.8 (79.5-95.9)	0.1998	3.29(2.21- 4.92)	32.56	3	< 0.01
Iran Total Prevalence	5	8570		11 (4-27)	0-91	99.6 (99.4-99.7)	1.6020	15.31 (13.42-17	.46) 937.55	4	< 0.01
Infection	5	8570		11 (4-27)	0-91	99.6 (99.4-99.7)	1.6020	15.31 (13.42-17		4	< 0.01
Prevalence Seroprevalence	_	_		-	_	-	_	_	_	_	_
•											
Ethiopia Total Prevalence	6	2376		17 (13-22)	6-39	89.0 (78.7-94.3)	0.1377	3.02 (2.17-4.2)	45.5	5	< 0.01
Infection	6	2376		17 (13-22)	6-39	89.0 (78.7-94.3)	0.1377	3.02 (2.17-4.2)	45.5	5	< 0.01
Prevalence				, ,		, , ,		, ,			
Seroprevalence	-	-		•	-	•	-	•	-	-	-
China											
Total Prevalence Infection	3 2	3314 950		21 (11-36) 19 (6-45)	0-100	95.0 (88.6-97.8) 97.5(93.7- 99.0)	0.4344 0.8164	4.46 (2.96-6.7) 6.29	39.73 39.61	2 1	< 0.01 < 0.01
Prevalence	2	930		19 (0-43)	-	97.3(93.7- 99.0)	0.0104	0.29	39.01	1	< 0.01
Seroprevalence	1	2364		25 (23-27)	-	-	-	-	-	-	-
Nigeria											
Total Prevalence	5	3091		16 (8-29)	1-78	98.4(97.5- 98.9)	0.6816	7.83 (6.36- 9.63	3) 245.04	4	< 0.01
Infection Prevalence	4	2591		12 (10-16)	5-30	72.0(20.7- 90.1)	0.0472	1.89 (1.12- 3.18	10.73	3	0.01
Seroprevalence	2	700		76 (16-98)	-	99.0(97.9- 99.5)	4.0252	9.79	95.77	1	< 0.01
Vietnam											
Total Prevalence	2	408		50 (8-92)	0	98.8(97.4-99.4)	2.9868	8.98	80.65	1	< 0.01
Infection	2	408		33 (14-59)	-	95.2(85.6- 98.4)	0.5750	4.55	20.66	1	< 0.01
Prevalence Seroprevalence	1	101		77 (68-85)	-	-	-	-	-	-	-
Colombia											
Total Prevalence	3	4821		66 (37-86)	0-100	99.7 (99.5-99.8)	1.0567	17.54 (14.82-20	.75) 615.17	2	< 0.01
Infection	2	1786		25 (10-51)	-	97.0(92.2- 98.8)	0.6427	5.77	33.27	1	< 0.01
Prevalence Seroprevalence	2	3237		77 (72-81)	-	63.1(0.0- 91.5)	0.0282	1.65	2.71	1	0.1
-											
Brazil Total Prevalence	6	3219		59 (23-87)	0-100	99.0 (98.6-99.2)	3.9016	9.78 (8.33-11.48	3) 478.34	5	< 0.01
Infection	2	797		50 (1-100)	-	99.7 (99.5-	18.542	17.43	303.92	1	< 0.01
Prevalence	4	2422		63 (48-75)	0.07	99.8)) 170 50	2	< 0.01
Seroprevalence	4	2422		03 (48-73)	9-97	98.3(97.2-98.9)	0.3411	7.58 (5.95- 9.67	7) 172.52	3	< 0.01
St. Lucia				F. (61 Fo:	0.100	06.6.55	0.7467	0.00		-	
Total Prevalence Infection	3	371		56 (31-78)	0-100	86.6 (61.4-95.3)	0.7467	2.73 (1.61-4.63)	14.89	2	< 0.01
Prevalence	-	-		-	-	-	-	-	-	-	-
Seroprevalence	3	371		56 (31-78)	0-100	86.6 (61.4-95.3)	0.7467	2.73 (1.61-4.63)	14.89	2	< 0.01
France											
Total Prevalence	4 2	1439		32 (3-86)	0-100	99.4 (99.1-99.6)	6.6081 18.948	12.55 (10.55-14		3	< 0.01
Infection Prevalence	2	492		27 (0-99)	-	97.3(93.3-98.9)	18.948	6.12	37.51	1	< 0.01
Seroprevalence	2	947		33 (5-81)	-	99.4(98.9-99.7)	2.4041	12.89	166.08	1	< 0.01
Spain											
Total Prevalence	3	434		9 (7-12)	1-46	0 (0-84.1)	0	1 (1-2.51)	1.31	2	0.52
Infection Prevalence	3	434		9 (7-12)	1-46	0 (0-84.1)	0	1 (1-2.51)	1.31	2	0.52
Seroprevalence	-	-		-	-	-	-	-	-	-	-
Italy											
Total Prevalence	5	2929		19 (8-38)	1-91	98.8 (98.3-99.2)	1.1257	9.15 (7.59-11.02	2) 334.53	4	< 0.01
Infection	3	1769		7 (2-19)	0-100	96.1(91.7- 98.2)	0.9135	5.07 (3.47- 7.40) 51.37	2	< 0.01

Table 2 (continued)

Parameters	Number of studies		Total samples	[confidence	Prediction interval (%) at 95% level	Heterogeneity analysis							
						Quantifying Hete	Test of Heterogeneity						
				interval at 95% level		I ² Value Tau (%) with range	square value	H value with range	Chi square heterogeneity statistics	DF	P Valu		
Seroprevalence	3	1242		30 (18-45)	0-100	96.8(93.5- 98.4)	0.3350	5.62 (3.94- 8.02	2) 63.13	2	< 0.0		
Zambia													
Total Prevalence	4	2626		26 (9-56)	0-99	99.5 (99.2-99.6)	1.6872	13.51 (11.45-15	5.94) 547.36	3	< 0.0		
Infection	3	842		16 (11-22)	0-97	72.1(5.8- 91.8)	0.1117	1.89 (1.03- 3.48	8) 7.18	2	0.02		
Prevalence													
Seroprevalence	1	1784		70 (68-72)	-	-	-	-	-	-	-		
Kenya													
Total Prevalence	3	1053		36 (19-57)	0-100	97.3 (94.6-98.6)	0.5682	6.04 (4.3-8.49)	73.02	2	< 0.0		
Infection	1	192		51 (44-58)	-	-	-	-	-	-	-		
Prevalence													
Seroprevalence	2	861		29 (12-53)	-	97.8(94.8- 99.1)	0.5541	6.79	46.12	1	< 0.0		
A													
Argentina Total Prevalence	3	662		53 (40-65)	0-100	90.8 (75.8-	0.1838	3.29 (2.03-5.32	0.1838	2	< 0.0		
Total Frevalence	3	002		33 (40-03)	0-100	96.5)	0.1656	3.29 (2.03-3.32	0.1030	2	< 0.0		
Infection	1	186		42 (35-50)	-	-	_	-	-	-	-		
Prevalence				, ,									
Seroprevalence	2	476		58 (44-70)	-	88.7(57.0-97.0)	0.1383	2.97	8.82	1	0		
Indonesia	2	1.470		62 (40.76)		06 4(00 0 00 7)	0.1020	E 0E	27.50	1	< 0.0		
Total Prevalence Infection	2 1	1478 487		63 (48-76) 70 (66-74)	-	96.4(90.0- 98.7)	0.1838	5.25	27.58	1	< 0.0		
Prevalence	1	407		70 (00-74)	-	-	-	-	-	-	-		
Seroprevalence	2	1478		63 (48-76)	-	96.4(90.0- 98.7)	0.1838	5.25	27.58	1	< 0.0		
				,,,,,,		,							
Gambia													
Total Prevalence	2	2126		21 (1-87)	-	99.3(98.9-99.5)	8.0386	11.89	282.70	1	0		
Infection	1	1294		1 (1-2)	-	-	-	-	-	-	-		
Prevalence	2	832		E7 (40 71)		00.4(74.1.07.0)	0.1005	2.62	10.11	1	0		
Seroprevalence	2	832		57 (42-71)	-	92.4(74.1- 97.8)	0.1825	3.62	13.11	1	U		
Tanzania													
Total Prevalence	2	1574		26 (12-46)	-	96.3(89.9-98.7)	0.4144	5.22	27.30	1	< 0.0		
Infection	1	245		18 (13-23)	-	-	-	-	-	-	-		
Prevalence													
Seroprevalence	1	1329		35 (32-38)	-	-	-	-	-	-	-		
Commonwealth o	of Australia												
Total Prevalence	2	2151		61 (40-78)	_	98.9(97.7-99.4)	0.3730	9.35	87.43	1	< 0.01		
Infection	1	1277		50 (47-53)	-	-	-	-	-	-	-		
Prevalence													
Seroprevalence	1	874		70 (67-73)	-	-	-	-	-	-	-		
Portugal Total Prevalence	2	1510		31 (1-97)		99.8(99.7-99.9)	8.9697	23.20	538.44	1	< 0.01		
I otal Prevalence Infection	2	1510		31 (1-97) 27 (1-94)	-	99.8(99.7-99.9)	7.2158	23.20	538.44 475.01	1	< 0.0		
Prevalence	-	1010		-, (+ > 1)					., 0.01		. 0.0.		
Seroprevalence	1	406		79 (75-83)	-	-	-	-	-	-	-		
Zimbawe													
Total Prevalence	2	2360		44 (28-61)	-	90.4(65.1-97.3)	0.2276	3.22	10.39	1	0		
Infection Prevalence	1	94		35 (26-46)	-	-	-	-	-	-	-		
Seroprevalence	1	2266		52 (50-54)	-	_	_	_	-	_	-		
				. ()									
Subgroup analysi	is by speci	es of parasi	ite										
B.bigemina													
Total Prevalence	128		61423	22 (18-27)	1-86	98.8 (98.8-98.9)	2.3566	9.28 (8.98-	10939.70	127	0		
Infantia:	70		0.4600	10 (7.10)	1.64	00.0(07.0.00.0)	10464	9.59)	2072.02		0		
Infection	78		34630	10 (7-13)	1-64	98.0(97.8-98.2)	1.9464	7.09 (6.74-	3873.83	77	0		
Prevalence Seroprevalence	65		31846	41 (35-48)	8-86	98.4(98.2- 98.5)	1.1218	7.46) 7.84 (7.44-	3929.72	64	0		
эл орг с чиснее	us		31040	71 (JJ-40)	0-00	20.7(20.4- 20.3)	1.1218	7.84 (7.44- 8.26)	J747./4	04	U		
								0.20)					
B.bovis													
Total Prevalence	108		45971	20 (16-25)	1-85	98.9 (98.7-98.9)	2.4850	9.27 (8.94-	9188.75	107	0		
								9.61)					

Table 2 (continued)

Parameters	Number of studies	Total	Pooled prevalence (%) [confidence interval at 95% level	Prediction interval (%) at 95% level	Heterogeneity analysis							
		samples			Quantifying Hete	Test of Heterogeneity						
					I ² Value Tau (%) with range	square value	H value with range	Chi square heterogeneity statistics	DF	P Value		
Infection Prevalence	66	26047	9 (6-13)	0-70	98.2(98.0-98.4)	2.3948	7.48 (7.09- 7.89)	3635.48	65	0		
Seroprevalence	52	24380	38 (31-45)	7-84	98.8(98.7- 98.9)	1.1350	9.20 (8.73- 9.70)	4319.45	51	0		
B. divergens												
Total Prevalence	9	4754	12 (2-46)	0-99	99.1 (98.9-99.3)	7.2598	10.65 (9.45- 12.01)	907.80	8	< 0.01		
Infection Prevalence	6	3549	7 (1-48)	0-100	99.3(99.1- 99.5)	9.8367	12.12(10.55- 13.92)	734.29	5	< 0.01		
Seroprevalence	3	1205	34 (13-64)	0-100	98.8(98.0- 99.3)	1.1971	9.21 (7.10- 11.96)	169.79	2	< 0.01		
B.major												
Total Prevalence	8	4567	15 (2-55)	0-100	99.2(99-99.4)	7.8796	11.14 (9.84- 12.61)	868	7	< 0.01		
Infection Prevalence	5	3362	8 (0-65)	0-100	99.4 (99.2-99.6)	12.049	13.12 (11.33- 15.19)	688.54	4	< 0.01		
Seroprevalence	3	1205	34 (13-64)	0-100	98.8 (98-99.3)	1.1971	9.21 (7.10- 11.96)	169.79	2	< 0.01		
B.occultans												
Total Prevalence	2	312	16 (7-33)	-	88.9 (58.3-97.1)	0.4117	3.01	9.04	1	< 0.01		
Infection Prevalence	2	312	16 (7-33)	-	88.9 (58.3-97.1)	0.4117	3.01	9.04	1	< 0.01		
Seroprevalence	-	-	-	-	-	-	-	-	-	-		

observed that atmospheric temperature has a profound effect on tick activity evidenced by increased tick population during high temperature (El Moghazy et al., 2014). This fact possesses an alarming threat to the scientific community in the era of global warming. It is anticipated that the disease prevalence may continue to increase in the future until and unless we can control the ticks or the disease effectively.

The continent wise analysis revealed a higher prevalence in South America (64%). It has been estimated that the majority of the cattle population in South America is in tick infested areas with established enzootic stability in most of the regions (Montenegro-James, 1992). However, the highest prevalence in South America may be attributed to the high tick population and the favourable agroclimatic conditions prevailing in this region (Payne and Osorio, 1990). The pooled prevalence estimate was least in Asia (19%) which may be due to the high number of studies (n = 56) considered for meta-analysis with less seroprevalence studies. The studies from South Africa demonstrated that wide distribution of *B. bigemina* whereas the patchy distribution of *B.bovis* solely depend on the vector distribution (Bryant and Norval, 1985)

The diagnosis of bovine babesiosis mainly depends on the microscopic examination of Giemsa stained blood smear as the detection of piroplasms is the gold standard for the diagnosis, especially during the acute stage of the disease. However, in bovine babesiosis, a low parasitemia carrier state is usually developed after recovery of infection wherein the survived animals serve as a reservoir of the parasite and the blood smear examination is less sensitive to detect the carrier state (Mahoney, 1969). Further, in endemic countries where enzootic stability along with premmunity persist among cattle; the absence of infection by blood smear examination may not be reliable, rather antibody detection methods will aid in determining the level of endemicity of the disease (Akinboade and Dipeolu, 1984). Keeping in view of this, the seroprevalence will be on the higher side compared to the infection prevalence and this may result in erroneous pooled prevalence estimate. To address this issue, in the present paper, meta-analysis for

infection prevalence (active infection) and seroprevalence has been calculated that generated more clarity in the analysis.

In bovine babesiosis, endemic stability is noteworthy wherein host, parasite, vector, and environment remained in a balanced way so that clinical disease occurs rarely (Perry et al., 1998). Bos Taurus is highly susceptible to tick-borne diseases compared to Bos indicus that remains as a major constraint in the rearing of high yielding exotic breeds of cattle. The crossbred cattle are also highly susceptible to tick-borne diseases whereas buffalo and zebu cattle often act as carrier of infection (Jithendran, 1997). Although B. bigemina is more widespread, causing mortality rates up to 30% in animals without treatment, B. bovis is the most virulent generating mortality rates between 70–80%, as a result of the related neurological signs.

Despite its overwhelming effects on the health of livestock, adequate emphasis on the control of bovine babesiosis has not been given across the globe. Ideally, control of bovine babesiosis relies on an integrated approach with vector control, chemotherapy and immunoprophylaxis along with exploitation for the scope of endemic stability. Besides, grazing management wherein the ecological system has made unfavourable for the growth and propagation of ticks is also found promising (Teel et al., 1997).

The study showed the wide distribution of bovine babesiosis across the globe with the involvement of six continents. Since widely accepted cost-effective vaccines are not available in the market, the threat will continue to increase and will spread across the remaining part of the world soon. In this study, analysis in all the subgroups based on antigen detection methods (infection prevalence) and antibody detection methods (seroprevalence) has been carried out to avoid the overestimation of total pooled prevalence. This will help to understand the prevalence realistically as serology is unable to demarcate between past and present infection and will represent cumulative exposure to infection.

5. Conclusion

To the best of our knowledge, this study represents the first systematic review and meta analysis providing an overview of seroprevalence and active disease prevalence estimates of bovine babesiosis in a global perspective. The pooled prevalence estimates generated in the study is revealing an increase in disease trend and the need for immediate planning of mitigation strategies paralleled with the development of early diagnostic methods to reduce the impact of disease throughout the world.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Siju Susan Jacob: Conceptualization, Methodology, Writing - original draft, Visualisation. Pinaki Prasad Sengupta: Writing - review & editing, Supervision. Krishnamoorthy Paramanandham: Methodology, Data curation. Kuralayanapalya Puttahonnappa Suresh: Formal analysis. Jayantha Kumar Chamuah: Writing - review & editing. Gudepalya Renukaiah Rudramurthy: Writing - review & editing. Parimal Roy: Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

None.

References

- Akinboade, O.A., Dipeolu, O.O., 1984. Comparison of blood smear and indirect fluorescent antibody techniques in detection of haemoparasite infections in trade cattle in Nigeria. Vet. Parasitol. 14, 95–104.
- Altay, K., Aydin, M.F., Dumanli, N., Aktas, M., 2008. Molecular detection of *Theileria* and *Babesia* infections in cattle. Vet. Parasitol. 158, 295–301.
- Babes, V., 1888. On bacterial hemoglobinuria of beef. C. R. Hebd. Acad. Sci. 107, 692–694.
- Bryant, B.A., Norval, R.A.I., 1985. Diseases affecting domestic animals in Manicaland. Zimb. Vet. J. 16, 9–17.
- Criado-Fornelio, A., Martinez-Marcos, A., Buling, S.A., Barba-Carretero, J.C., 2003. Molecular studies on *Babesia, Theileria* and Hepatozoon in Southern Europe. Part II. Phylogenetic analysis and evolutionary history. Vet. Parasitol. 114, 173–194.
- Edelhofer, R., Muller, A., Schuh, M., Obritzhauser, W., Kanout, A., 2004. Differentiation of Babesia bigemina, B.bovis, B.divergens and B.major by western blotting-first report of B. bovis in Austrian cattle. Parasitol. Res. 92, 433–435.
- Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634.

- El Moghazy, H.M., Ebied, M.M., Abdelwahab, M.G., El Sayed, A.A., 2014.
 Epidemiological studies on bovine babesiosis and theileriosis in Qalubia governorate.
 Benha Vet. Med. J. 27, 36–48.
- Elsify, A., Sivakumar, T., Nayel, M., Salama, A., Elkhtam, A., Rizk, M., Mosaab, O., Sultan, K., Elsayed, S., Igarashi, I., Yokoyama, N., 2015. An epidemiological survey of bovine *Babesia* and *Theileria* parasites in cattle, buffaloes and sheep in Egypt. Parasitol. Int. 64, 79–85.
- Everitt, J.I., Shadduck, J.A., Steinkamp, C., Clabaugh, G., 1986. Experimental *Babesia bovis* infection in Holstein calves. Vet. Pathol. 23, 556–562.
- Fitzpatrick, J.E., Kennedy, C.C., McGeown, M.G., Oreopoulos, D.G., Robertson, J.H., Soyannwo, M.A., 1968. Human case of piroplasmosis (babesiosis). Nature 217, 861–862
- Garcia-Sanmartin, J., Nagore, D., Garcia-Perez, A.L., Juste, R.A., Hurtado, A., 2006. Molecular diagnosis of *Theileria* and *Babesia* species infecting cattle in Northern Spain using reverse line blot macroarrays. BMC Vet. Res. 2, 16.
- Higgins, J.P., Thompson, S.G., Deeks, J.J., Altman, D.G., 2003. Measuring inconsistency in meta-analyses. Br. Med. J. 27, 557–560.
- Higgins, J.P.T., Thompson, S.G., 2002. Quantifying heterogeneity in meta-analysis. Stat. Med. 21, 1539–1558.
- Homer, M.J., Aguilar-Delfin, I., Telford, S.R., Krause, P.J., Persing, D.H., 2000. Babesiosis. Clin. Microbiol. Rev. 13, 451–469.
- Hunfeld, K.P., Hildebrandt, A., Gray, J.S., 2008. Babesiosis Recent insights into an ancient disease. Int. J. Parasitol. 38, 1219–1237.
- Ibrahim, H.M., Adjou, M.P.F., Mohammed-Geba, K., Sheir, S.K., Hashem, I.S., Cao, S., 2013. Molecular and serological prevalence of *Babesia bigemina* and *Babesia bovis* in cattle and water buffalos under small-scale dairy farming in Beheira and Faiyum Provinces, Egypt. Vet. Parasitol. 198, 187–192.
- Jithendran, K.P., 1997. A note on haemoprotozoan parasites of cattle and buffaloes in Kangra valley of Himachal Pradesh. Indian J. Anim. Sci. 67, 207–208.
- L'Hostis, M., Chauvin, A., 1999. Babesia divergens in France: Descriptive and analytical epidemiology. Parassitologia 41, 59–62.
- L'Hostis, M., Seegers, H., 2002. Tick-borne parasitic diseases in cattle: current knowledge and prospective risk analysis related to the ongoing evolution in French cattle farming systems. Vet. Res. 33, 599–611.
- Mahoney, D.F., 1969. Bovine babesiosis: a study of factors concerned in transmission. Ann. Trop. Med. Parasitol. 63, 1–4.
- M'Fadyean, J., Stockman, S., 1911. A new species of piroplasm found in the blood of British cattle. J. Comp. Pathol. 24, 340–354.
- Montenegro-James, S., 1992. Prevalence and control of babesiosis in the Americas. Mem. Inst. Oswaldo Cruz. 87, 27–36.
- Payne, R.C., Osorio, O., 1990. Tick-borne diseases of cattle in Paraguay. I. Seroepidemiological studies on anaplasmosis and babesiosis. Trop. Anim. Health Prod. 22, 53-60.
- Perry, B.D., Chamboko, T., Mahan, S.M., Medley, G.F., Minjauw, B., O'Callaghan, C.J., Peter, T.F., 1998. The economics of integrated tick and borne diseases control on commercial farms in Zimbabwe. Zimb. Vet. J. 29, 21–29.
- Silva, M.G., Henriques, G., Sanchez, C., Marques, P.X., Suarez, C.E., Oliva, A., 2009. First survey for *Babesia bovis* and *Babesia bigemina* infection in cattle from Central and Southern regions of Portugal using serological and DNA detection methods. Vet. Parasitol 166. 66–72.
- Skrabalo, Z.D., Deanovic, Z., 1957. Piroplasmosis in Man; Report on a Case. Documenta de medicina geographica et tropicam 9, 11-16.
- Smith, T., Kilborne, F.L., 1893. Investigations into the nature, causation and prevention of Texas or southern cattle fever. US Government Printing Office, pp. 301.
- Taylor, M.A., Coop, R.L., Wall, R.L., 2007. Veterinary Parasitology, 4th Ed.). Wiley-Blackwell, Oxford (UK), pp. 110–160.
- Teel, P.D., Marin, S., Grant, W.E., Stuth, J.W., 1997. Simulation of host-parasite-land-scape interactions: influence of season and habitat on cattle fever tick *Boophilus* sp population dynamics in rotational grazing systems. Ecol. Model. 97, 87–97.
- Telford, S.R., Gorenflot, A., Brasseur, P., Spielman, A., 1993. Babesial infections in humans and wildlife. JP Kreier Parasitic protozoa. San Diego: Academic press, California, pp. 1–47.
- Uilenberg, G., 1995. International collaborative research: significance of tick-borne hemoparasitic diseases to world animal health. Vet. Parasitol. 57, 19–41.
- Zintl, A., Mulcahy, G., Skerrett, H.E., Taylor, S.M., Gray, J.S., 2003. Babesia divergens; a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 16, 622–636.