

1

Citation: Suresh K P (2024). NADRES V2-Complete R programming Codes for

Livestock Disease Risk Prediction, ICAR- NIVEDI, Bengaluru, 1-105.

Year: 2024

Published by: Director, ICAR- National Institute of Veterinary Epidemiology and

Disease Informatics (NIVEDI), Yelahanka, Bengaluru-560064.

PME NUMBER: F.No.11/NIVEDI/PMEC/RPS/2021-22/2425-26

©ICAR-NIVEDI

Development Team:

Dr. K. P. Suresh, Nodal officer, NADRES V2

Ms. Sushma R, YP-II, NADCP CSF-CP Project

Ms. Raaga R, SRF, NICRA Project

Mr. Dheeraj R, JRF, DBT-AdMac-I Project

Manual Prepared by:

Dr. K. P. Suresh, Nodal officer, NADRES V2

2

Disclaimer
The forewarnings are based on the retrospective disease data

available in the NADRES database. Hence, for those states

wherein data is limited/less, the forewarning may not be realistic.

Further the forewarning will not take into consideration the control

measures that are in situ.

3

Acknowledgements

I would like to acknowledge the constant support and inspiration from Hon’ble Secretary,

DARE and Director General, ICAR, Government of India, New Delhi.

I would like to express sincere everlasting gratitude to Hon’ble Deputy Director

General (Animal Science) for his constant encouragement, support and guidance.

I would also like to express sincere gratitude to the Department of Animal Husbandry and

Dairying (DAHD), Ministry of Agriculture and Farmers Welfare, Government of India

for providing the livestock population data for use in model building.

Animal Husbandry Departments of state governments and also NADEN centres are

gratefully acknowledged for the timely submission of reports of livestock disease

outbreak data. I am thankful to all the scientific and technical staff of ICAR-NIVEDI for

their feedback and support.

I would like to extend my heartfelt gratitude to the National Animal Disease Control

Programme (NADCP) and the National Innovations on Climate Resilient Agriculture

(NICRA) projects for their invaluable financial support and manpower contributions in

the preparation of this document.

I would like to acknowledge The R Foundation for Statistical Computing, c/o Institute for

Statistics and Mathematics 1020 Vienna, Austria for providing the opportunity to work in

open source.

Furthermore, I would also like to acknowledge with much appreciation the and support

received from the scientists, Dr. Rajeswari Shome, Dr. D. Hemadri, Dr. S.S. Patil, Dr. P.

Krishnamoorthy, Dr. S.J. Siju and SRF’s, JRF’s, Young Professionals and other

contractual staff working in Disease Informatics Lab/Spatial Epidemiology Lab in

preparing this R code document.

 K. P. Suresh, Ph.D

 Principal Scientist

https://www.wu.ac.at/en/statmath/
https://www.wu.ac.at/en/statmath/

4

TABLE OF CONTENT

SI. No. Content
Page

Number

1 About the Documentation 1 - 3

2 Introduction to NADRES V2 4 - 5

3 Forewarning Methodology 6 - 12

4 I. Material 6 - 8

 II. NADRES V2 Data flow and AI Based Data capturing diagram 9

 III. Weighted outbreak score 10 - 11

 IV. Forecasting of weather parameters 11

 V. Implementation of Principal Component Analysis 12

 VI. Machine Learning Models 12

5 Accuracy of Prediction 13

6 Moran’s I for clustering of Livestock diseases 14

7 R Software 14

8 Forewarning of livestock disease for every month 15 - 20

 I. Diseases, Species affected, clinical signs and its preventive measures 15 - 19

II. Significant weather parameters for livestock disease table using Discriminant

Functional Analysis
20

9 Data Storage, Security and Visualisation 21- 23

10 R programming scripts aligned with the methodology 24 - 98

 Step 1: Convert extracted data to CSV format (Weather Parameter) 24 - 35

 Step 2: Applying PCA Method (Risk Variables) 36-37

 Step 3: Modelling Approaches (Risk Prediction) 38 - 69

 Part 1: Analysis, forecasted results and disease maps at the state level 38 - 65

 Part 2: To obtain district level disease maps 66 - 69

 Step 4: Watermarking for maps created at the district and state levels 70 - 84

 Step 5: Data preparation for warnings and alerts uploading to the website 85 - 87

 Step 6: To assess geographic correlation, use the Moran-I index 88 - 91

 Step 7: Forecasting weather parameters at state level 92 - 94

 Step 8: Finding Significant Weather Parameters for Fifteen Diseases 95 - 98

11 Data Communication 99-103

12 Abbreviations 104

13 References 105

1

1. ABOUT THE DOCUMENTATION…

 This document provides a comprehensive, systematic approach to livestock disease prediction

and management in India, focusing on the application of R programming. It presents advanced

forecasting techniques, machine learning models, and data analytics to predict risks associated with 15

economically significant livestock diseases. Through detailed methodologies and R programming codes,

it offers a robust framework for disease prevention and control. Structured across 105 pages, the

documentation ensures a logical progression from data collection to forecasting results, emphasizing

scientific rigor and practical application.

 Forecasting in livestock health involves quantitative predictions based on historical data,

enabling decision-makers to anticipate disease outbreaks and implement timely interventions. Initially

applied in fields like agriculture and meteorology, forecasting has evolved to incorporate advanced

methods such as time series analysis, econometric models, and machine learning algorithms. In livestock

disease management, these techniques are crucial for analyzing complex data patterns, including

environmental factors, animal populations, and historical disease incidence. The ability to predict

disease dynamics allows for effective disease prevention, minimizing economic losses and supporting

rural livelihoods.

 R programming plays a central role in developing and applying these forecasting models. As

an open-source platform, R offers extensive tools for statistical analysis, machine learning, and data

visualization. Specialized R packages like forecast, tsibble, prophet, and caret provide an environment

for constructing robust models that predict livestock disease risks. The integration of machine learning

models within R enhances forecasting accuracy by identifying non-linear relationships and patterns that

traditional models may miss. Additionally, R’s visualization tools, such as ggplot2 and shiny, enable the

creation of dynamic and interactive visualizations, making complex forecasting results more accessible

to stakeholders.

 The efficiency of machine learning (ML) models in handling high-dimensional, complex

datasets lies in their ability to automatically select relevant features, model intricate relationships, and

process large volumes of data with minimal human intervention. Models such as random forests, support

vector machines (SVM), neural networks, gradient boosting machines (GBM), k-nearest neighbors

(KNN), decision trees, and ensemble methods have demonstrated superior performance in livestock

disease forecasting. These models excel in both classification tasks, where random forests, SVMs, and

neural networks accurately categorize disease occurrences, and in forecasting tasks, where models like

recurrent neural networks (RNN) and long short-term memory (LSTM) predict disease outbreaks based

on temporal data. Their ability to capture non-linear interactions and complex relationships within

datasets significantly enhances prediction accuracy compared to traditional statistical approaches. As

more data becomes available, ML models continue to refine their predictions, offering real-time, data-

driven insights that are essential for timely and effective disease intervention and control strategies.

2

The document outlines a four-stage workflow for livestock disease forecasting:

Data Capturing: The process of data capturing involves the systematic collection of comprehensive

and high-quality data from sources such as veterinary records, environmental databases, and historical

disease trends. Accurate and detailed data is the foundation for any predictive model, as it enables the

detection of underlying patterns and relationships that drive disease outbreaks. High-quality data ensures

that models can identify complex, non-linear interactions between variables, such as the influence of

environmental factors on disease spread. Without accurate data capturing, the subsequent steps in the

modelling process are compromised, leading to biased or unreliable predictions.

Data Processing: Data processing involves cleaning, normalizing, and aggregating raw data to ensure

consistency and reliability across datasets. This step is crucial for addressing missing values, handling

outliers, and performing necessary transformations such as scaling or encoding variables. Through

techniques like imputation for missing data and normalization to standardize variables, the dataset

becomes suitable for machine learning and statistical models. Processing also involves feature

engineering, where new variables are derived to enhance the model's predictive power. Proper data

processing ensures that the model inputs are accurate and that the model is capable of learning

meaningful relationships without being influenced by noise or outliers.

Data Modelling: Once the data is processed, both statistical and machine learning models are applied

to predict future disease risks. This step involves selecting the appropriate models based on the nature

of the data and the prediction task. Statistical models like generalized linear models (GLMs) capture

linear relationships, while machine learning models such as random forests, support vector machines

(SVM), and neural networks identify complex, non-linear patterns. By training on historical data, these

models can forecast future disease outbreaks, accounting for interactions between environmental,

biological, and historical variables. The accuracy of these predictions is heavily dependent on the quality

of data and the appropriateness of the model chosen.

Data Communication: After the model produces forecasts, data communication translates the results

into actionable insights through reports, visualizations, and interactive dashboards. This step is critical

for ensuring that stakeholders, such as veterinarians, policy makers, and disease control agencies, can

understand and interpret the results. Effective data communication not only presents the forecast but

also conveys uncertainty, confidence intervals, and risk factors associated with the predictions. Clear,

data-driven communication allows for timely and informed decision-making, enabling the

implementation of necessary interventions to mitigate disease risks and improve animal health

outcomes.

Why R Programming?

 R programming is exceptionally suited for livestock disease forecasting due to its robust

computational capabilities and extensive suite of statistical tools. The efficiency of R in managing large,

complex datasets is underpinned by its advanced memory management system, which allows for

effective in-memory data manipulation. This capability is further enhanced by specialized packages like

data.table and bigmemory, which provide optimized data structures and algorithms to handle extensive

3

datasets without overwhelming system memory. R's storage capacity is augmented through these

external memory packages, enabling it to manage and analyse datasets that exceed the physical RAM

limits of a machine. This is achieved through techniques such as data chunking and virtual memory

management, which ensure that operations on large datasets remain feasible and efficient.

 Additionally, R's integration with parallel and distributed computing frameworks allows for the

scaling of computations across multiple processors and nodes, optimizing both performance and

memory usage. This is crucial for processing and analysing voluminous data typical in livestock disease

forecasting. R's support for GPU acceleration via packages like keras and tensorflow further extends its

computational capabilities. By leveraging Graphics Processing Units (GPUs), R accelerates the training

and execution of complex machine learning models, particularly deep learning algorithms that require

substantial computational resources.

 These features collectively make R an indispensable tool for livestock disease forecasting. Its

ability to handle large datasets, manage memory efficiently, and utilize advanced computational

resources ensures that it can address the intricate demands of modelling, forecasting, and visualizing

disease trends with precision and effectiveness.

NIVEDI's Contribution to Livestock Disease Management

 The ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI)

plays a critical role in addressing economically significant livestock diseases in India. NIVEDI's success

in eradicating diseases like Rinderpest demonstrates the effectiveness of predictive strategies. Building

on this, NIVEDI has focused on 15 priority livestock diseases, developing a comprehensive database

that supports the National Animal Disease Referral Expert System (NADRESv2). This system, powered

by advanced forecasting methodologies and R programming, provides monthly disease forewarnings,

disseminated through bulletins to national and state-level animal husbandry departments. These

forewarnings enable veterinarians to take preventive measures, reducing the likelihood of disease

outbreaks and protecting the livestock sector.

 Through its integration of predictive modelling, data analytics, and R programming, NIVEDI has

developed a scientifically robust system that enhances livestock health management in India. The

methodologies outlined in this document not only advance the technical precision of disease forecasting

but also contribute to the broader goal of sustaining rural economies and improving public health.

SUMMARY

 This document serves as a detailed guide to the scientific methods and R programming codes

used in forecasting livestock diseases in India. By combining advanced statistical techniques, machine

learning models, and comprehensive data handling capabilities, the framework presented here equips

researchers, veterinarians, and policymakers with the tools needed for effective disease prediction and

control. NIVEDI's efforts, supported by NADRESv2, underscore the importance of accurate forecasting

in safeguarding the livestock industry and enhancing rural livelihoods.

3. INTRODUCTION TO NADRES v2

The geographic and seasonal distribution of many infectious diseases are associated with climate

and therefore the possibility of using seasonal climate forecasts as predictive indicators in disease early

warning system (EWS) became imminent. In this context, ICAR-NIVEDI, in its quest for achieving better

livestock health, had developed an interactive web portal named “National Animal Disease Referral Expert

System (NADRES)” during early part of the first decade of the millennium. The web portal, which was

developed from the financial support of National Agricultural Technology Project, was launched in the year

2005. The portal which is interactive, allows the user/stakeholder to access livestock disease forewarning

(n=13) at the district level for entire country two months in advance. The portal which was initially built on

oracle platform was later changed to MySQL platform to store the administrator provided disease

information and other relevant meteorological and risk factor information. However, with the availability

of remote sensed satellite images and the advancement in information technology and statistical algorithms,

the upgradation of NADRES became inevitable. To this end, a newer version of NADRES (NADRES V2)

has been developed.

How it is different from previous version?

In brief, it can be said that NADRES V2 underwent a sea change not only in its internal structure but

also in its physical design. As a result, now the central menu bar consists of Home, about us, Risk factors,

Analysis, Livestock disease, post prediction validation and contact details. Risk factors menu comprises of

details on resolution, time interval, units and source of 18 meteorological and 5 remote sensing parameters.

Analytics menu has various analysis options. The newly created livestock disease menu has the details

regarding species affected, clinical signs and preventive measures to be adopted for the 15 economically

important diseases. Post prediction validation menu contains the outbreak reports vs prediction. The menu

bar on the RHS tabs include online GIS, state wise Livestock disease forecast, district wise Livestock

disease forecast, Epi-calculator, download links for mobile app, etc. The website now hosts disease maps

in the form of choropleth maps for 15 diseases in two time periods (1990-2000 and 2000-2018). Similarly,

disease trends plots exhibit periodic regression plots providing future trend for the disease. On the LHS,

Login menu is provided for authorized persons to login and enter disease details and other related

parameters. Disease maps provide choropleth maps for 15 diseases in two time periods (1990-2000 and

2000-2018) is presented. Disease trends- Periodic regression plots are exhibited for prediction of the

diseases. Auto-messaging option has been created to send the reminders in the form of text messages to

concerned PI’s and Co-PI’s of NADEN centers for submission of outbreak reports. This message is sent

weekly to all the concerned officials. Additionally, a message is sent to the concerned veterinary officers

in Karnataka for initiation of preventive measures for the forewarned diseases at the block level. Plans are

in place to incorporate farmers’ and local vets’ mobile numbers in to the list so that they may be asked to

initiate preventive measures for the forewarned diseases.

5

Fig 3.1. NADRES V2 Home page

The forewarning methodology used is unique and has not been used earlier for livestock disease

forewarning in India. Following few paragraphs describe about the forewarning methodology used. It is a

well-known fact that weather plays an important role in the precipitation of many diseases and therefore,

the climatic parameters such as land surface temperature (LST), precipitation, wind velocity, humidity etc

are considered as risk parameters. These parameters along with other non-climatic parameters such as

livestock population, density, Normalized Differential Vegetation Index (NDVI), soil moisture constitute

the overall risk parameters. A total of 23 such parameters are collected/generated at village level and then

aggregated to district level before these are used for analysis.

In addition to the output provided at interactive web portal, the NADRES output are also published

in the form of monthly livestock disease forewarning bulletins. The prediction results come with a

disclaimer that forewarnings do not take into account of the control measures that already in situ and also

may not be realistic for those regions where the data is either unavailable or limited. This bulletin provides

the likely occurrence of the 15 shortlisted diseases two months in advance at the district level, disease

forewarning maps, prediction accuracy, details on diseases, species affected, clinical signs and its

preventive measures.

In summary, it can be said that NADRES V2 has underwent substantial changes not only in its

internal structure but also in its physical design and can be a useful tool for visitors of the website, farmers,

vets, policy makers etc.

6

4. Forewarning Methodology
Preamble

NADRES v2 is an early warning system powered by Artificial Intelligence with set of capacities needed

to generate and disseminate timely and meaningful warning information that enables at-risk livestock

population, farmers and organizations to prepare and act appropriately and in sufficient time to reduce the

livestock disease incidence.

Objectives

▪ Development of forecasting model for the major livestock diseases and predicting the risk of

livestock diseases in advance of two months.

▪ Development of state of art of communication models to communicate risk of livestock diseases

to the stake holders.

I. Materials and data acquisition

Livestock disease data

Previous 10 years’ livestock disease outbreak data retrieved from the NADRES database linked with Risk

factors data.

Livestock population data

The population data at village level for five major livestock species viz., cattle, buffalo, sheep, goat and

pigs were obtained from 20th Livestock census (2019) from Department of statistics, DAHD, GOI.

Species-wise & Category-wise Livestock Population (in thousands)

Sl No Species Category Population

in 2012

Population

in 2019

% Change

1 Cattle Exotic 39732 51356 29.3

 Indigenous 151172 142106 -6

 Total 190904 193462 1.3

2 Buffalo Total 108702 109852 1.1

3 Sheep Exotic 3781 4088 8.1

 Indigenous 61288 70172 14.5

 Total 65069 74260 14.1

4 Goat Total 135173 148885 10.1

5 Pig Exotic 2456 1897 -22.8

 Indigenous 7837 7159 -8.7

 Total 10293 9056 -12

6 Yaks Total 77 58 -24.7

7 Mithuns Total 298 386 29.5

8 Horses & Ponies Total 625 342 -45.3

9 Mules Total 196 84 -57.1

10 Donkeys Total 319 124 -61.1

11 Camels Total 400 252 -37

Total Livestock 512056 536761 4.8

7

Meteorological and Remotely Sensed Data:

The parameters such as air temperature (0C), perceptible water (mm), Precipitation rate (mm),

pressure (millibar), relative humidity (%), Vwind (m/s), U wind (m/s), Soil temperature (0C), Vapour

pressure(hPa), Wet day frequency, and sea level pressure (millibar) were extracted from National Centre

for environmental prediction (NCEP). The parameters such as potential evapotranspiration (PET),

Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Land Surface Temperature (LST), Normalised

Difference Vegetation Index (NDVI) were extracted from remote sensed images from MODIS website

(https://modis.gsfc.nasa.gov/). In brief, the MODIS products from NASA-TERRA satellite was

downloaded for the Indian locations by specifying the tiles (H24V5, H25V6, H24V6, H24V7, H25V7,

H25V8, H26V7, H26V6) from 2001 to till date.

The details are given below;

PRODUCT Science Data Sets (HDF Layers)

MOD15A2H Lai_500m (Leaf area index) 8 days average

MOD16A2 PET_500m (Total Potential Evapotranspiration) 8 days average

MOD11A2 LST_Day_1km (Daytime Land Surface Temperature) 8 days average

MOD13A1
i. 500m 16 days NDVI (Normalized Difference Vegetation Index)

ii. Enhanced Vegetation Index (EVI) 16 days average

The downloaded HDF files (Datasets, which are multidimensional arrays (layers) of a homogeneous type)

were converted to GeoTIFF files (single layer data) using R packages, which were later used to extract the

parameters by linking it with the sinusoidal values of the Indian villages. The scale factors were multiplied

for the extracted values as specified by the MODIS data products to get the values of the parameters. As

shown above, the atmospherically corrected NDVI was collected on 16-day interval at 250-meter resolution

using MODIS product MOD13A1 and LST was collected on 8-day interval using MOD11A2 at 1 KM

resolution.

The parameters such as rainfall, Soil moisture (%), and Wind speed (m/s) were obtained from

Global Land Data Assimilation System of NASA (https://disc.gsfc.nasa.gov). The remaining parameters

were downloaded from climatic research unit (CRU) of University of East Anglia website. It is worth

mentioning that the entire process of extraction, assimilation, processing and aligning have been done using

R programming language and R environment. After aligning the climatic and non-climatic data with the

disease and the livestock population data (aggregated at the district level), the statistical analysis was

performed in the R environment.

Static and Dynamic set

Two distinct sets of data regarding risk variables have been established: a static dataset comprising the

average weather parameters spanning a decade, from 2011 to 2022, and a dynamic dataset containing recent

years' data, specifically from 2023 and 2024. This categorization facilitates a scientific approach to

analyzing temporal patterns, trends, and variations in the designated risk factors, allowing for

comprehensive assessment and prediction of potential impacts.

https://modis.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/

8

Delta-Weather parameter

In the context of the National Animal Disease Referral and Export System (NADRES), made

significant strides by enhancing database capabilities. original "Static Set" covered a 10-year average of 23

weather parameters from 2011 to 2022. Now, took a bold step forward, introducing a more intricate

analysis. The upgraded "Static Set" remains the foundation but with a notable addition. Alongside the initial

23 parameters, we have included another set of 23 parameters known as "Delta" variables. These represent

the differences between corresponding weather parameters from 2001 to 2021. This detailed differencing

process offers valuable insights into long-term trends in meteorological conditions, especially relevant to

understanding animal disease dynamics. In addition, we have introduced the "Dynamic Set" bringing

another layer of sophistication. This set focuses on a more recent timeframe, using 2-year averaged

parameter values for 2023 and 2024. Derived from data spanning from 2018 to 2023, the Dynamic Set also

includes 23 "Delta" parameters, reflecting ongoing changes in climatic trends.

This dynamic approach ensures that NADRES stays updated with the latest meteorological patterns,

crucial for timely responses in the early detection of animal diseases. With a total of 46 parameters now,

this upgraded database is a cornerstone for NADRES. The integration of static and dynamic perspectives

solidifies our position in meteorological analysis. NADRES is a reliable tool for animal disease

management and a vital resource for informed decision-making in the intricate landscape of animal disease

referral and export processes.

Initially, two regression models and Seventeen machine learning models were applied to test their suitability

to fit the data and in all, Fourteen models; two regression model (Generalized Linear Model (GLM),

Generalized Additive Model (GAM), and twelve machine learning models, viz., Gradient Boosting

Machine Learning Algorithm (GBM), Random Forest (RF), Multivariate Adaptive Regression Splines

(MARS), Extreme Gradient Boosting Machine (XGM), Support Vector Machine (SVM), Decision Trees

(Tree_prob), Least Absolute Shrinkage and Selection Operator (Lasso), Functional Data Analysis (FDA),

Gaussian Process (GP), Neural Network (NN), Multinomial Logistic Regression (Multinom_probs), and

Kernel Support Vector Machine (KSVM) which fitted to data well were incorporated for the purpose of

disease prediction.

The models were trained using the case and control data available at ICAR-NIVEDI. Validation of the

models were done by dividing the total observations for a particular disease into marker samples and

validation samples and accuracy was tested in terms of discrimination power, which was done using

Receiving Operating Characteristics (ROC), Cohen Kappa (Heildke Skill Score) and True Skill statistics

(TSS) Accuracy, Error Rate, Precision, Sensitivity, Specificity, F1 score, Log Loss, and Gini-Coefficient.

Once the models produce the probability value, it was used for categorizing the risk. Briefly, when all the

models produce the p value of more than 0.5, then the highest p value is used for determining the high-risk

category. If all the models or any one model produces the p value of less than 0.5, then the lowest p value

was used for categorizing lower risk. This was done to minimize the false alert. Thus, the risk predictions

based on the probability values ranging from 0-1 are made as follows; Very High Risk (p=0.81-1.0), High

Risk (p=0.61-0.80), Moderate Risk (p=0.41-0.60), Low Risk (p=0.21-0.40), Very Low Risk (p=0.0-0.20)

and No Risk (p=0.0) for the occurrence of a said disease. It is believed that categorizing districts in to

various risk categories will help the stake holders to effectively utilize the available resources (money and

manpower).

9

II. NADRES v2 Data Flow and Data Processing Diagram

A) Data Flow Diagram:

Fig 4.1. NADRES V2 Data Flow Diagram.

B) Artificial Intelligence enabled Data Capturing and Forewarning System:

Fig 4.2. Data Capturing and Forewarning system

10

III. Weighted Outbreak Score

The outbreak data for the month of forecasting is extracted from NADRES database for the period of 10

years from current year. Outbreak data of 15 important livestock diseases are considered. The data is

aggregated at district level and the weighted score is defined based on the number of outbreaks for each

district in each month considering last 10 years. The weightage score was assigned as 0 for less than three

number of outbreaks in the last 10 years for selected month, score 1 for 3–6 number of outbreaks and 2

for more than 6 outbreaks. This weightage score for each district is labelled as risk variable in building the

models and risk maps.

IV. Feature Extraction and Data Engineering

Data collection from different sources could be internal and or external to satisfy the objectives of

forewarning requirements, data can be of any format, CSV, XML, JSON etc. In this processing of data and

feature engineering, we focus mainly on understanding the specified data set and cleaning the dataset, a

better understanding of features and their relationships, extracting essential variables, handling missing

values and human error, identifying outliers, transforming features if there are outliers so that either

truncates a data above a threshold or transform the data using log or any other transformation, scaling the

features extracted. This process would be maximising the insights into a dataset.

V. Forecasting of Weather Parameters

Weather forecasting has been one of the most challenging problems around the world because of both its

practical value in meteorology and the popular sphere for scientific research. Weather forecast systems are

among the most complex equation systems that computer has to solve. A great quantity of data, coming

from satellites, ground stations and sensors located around our planet send daily information that must be

used to foresee the weather situation in next hours and days all around. Weather forecasts provide critical

information about future weather. There are various techniques involved in weather forecasting, from

relatively simple observation of the sky to highly complex computerized mathematical models. Further,

forecast products by Indian Metrological department were used for validation of our forecasts

(https://mausam.imd.gov.in/imd_latest/contents/extendedrangeforecast.php).

 Following are the basic steps of forecasting process:

 1. Determine the forecast's purpose

 2. Establish a time horizon

 3. Select a forecasting technique

 4. Gather and analyse data

 5. Perform the forecast

 6. Monitor the forecast and use it in prediction of disease

11

Statistical Models used for forecasting of weather and remotely sensed variables

ARIMA stands for Autoregressive Integrated Moving Average. ARIMA is also known as Box-Jenkins

approach. Box and Jenkins claimed that non-stationary data can be made stationary by differencing the

series, Yt. The general model for Yt is written as,

Yt =ϕ1Yt−1 +ϕ2Yt−2…ϕpYt−p +ϵt + θ1ϵt−1+ θ2ϵt−2 +…θqϵt−q

Where, Yt is the differenced time series value, ϕ and θ are unknown parameters and ϵ are independent

identically distributed error terms with zero mean. Here, Yt is expressed in terms of its past values and the

current and past values of error terms.

The ARIMA Model combines three basic Methods:

• Auto Regression (AR) – In auto-regression the values of a given time series data are regressed on

their own lagged values, which is indicated by the “p” value in the model.

• Differencing (I-for Integrated) – This involves differencing the time series data to remove the trend

and convert a non-stationary time series to a stationary one. This is indicated by the “d” value in the

model. If d = 1, it looks at the difference between two-time series entries, if d = 2 it looks at the

differences of the differences obtained at d =1, and so forth.

• Moving Average (MA) – The moving average nature of the model is represented by the “q” value

which is the number of lagged values of the error term.

This model is called Autoregressive Integrated Moving Average or ARIMA (p, d, q) of Yt. We will follow

the steps enumerated below to build our model. ARIMA models were run in 18 combinations of p, d, q.

Based on the minimum AIC value, the order of ARIMA model was selected. This order was used for the

prediction of all the weather parameters used in developing disease forewarning models.

Fig. 4.3. Risk parameter Prediction using ARIMA model in Python

12

VI. Implementation of Principal Component Analysis

Large datasets are gradually common and are often difficult to interpret. Principal Component Analysis

(PCA) is a technique for reducing the dimensionality of such datasets, increasing the interpretability but at

the same time, minimizing the information loss. The PCA is employed in NADRES v2 by creating new

uncorrelated variables that successively maximize the variance. This means that ` preserving as much

variability as possible` translates into finding new variables that are linear functions of those in the original

dataset, that successively maximize variance and that are uncorrelated with each other. Determining such

new variables, the principal components (PCs) reduce to solve an eigenvalue/eigenvector problem. PCA

can be based on either covariance matrix or the correlation matrix and the main use of PCA are descriptive.

In the present study, all the meteorological and remote sensing variables are considering for PCA, with

correlation matrix, the final output of principal components which are independent of each were considered

for further ML modelling and risk estimation.

VII. Machine Learning Models

Disease outbreak data were aligned with generated risk variables to the respective latitude and longitude,

which were subjected to climate-disease modelling. A number of models were fit to aligned data and tested

for accuracy in terms of discrimination power. Two regression models, Generalized Linear Models (GLM)

and Generalized Additive Models (GAM) and Seventeen machine learning algorithms, i.e. Random Forest

(RF), Boosted Regression Tree (BRT), Artificial Neural Network (ANN), Multiple Adaptive Regression

Spline (MARS), Flexible Discriminant Analysis (FDA), Classification Tree Analysis (CTA), Extreme

Gradient Boosting Machine (XGM), Support Vector Machine (SVM), Decision Trees (Tree_prob), Least

Absolute Shrinkage and Selection Operator (Lasso), Functional Data Analysis (FDA), Gaussian Process

(GP), Neural Network (NN), Multinomial Logistic Regression (Multinom_probs), Kernel Support Vector

Machine (KSVM), Ridge Regression, Naive Bayes were employed for disease modelling. Different

modelling methods return different types of ‘model object’ and all these model objects could be used for

the predict function to make predictions for any combinations of values of independent variables. Response

plots were created to explore and understand model predictions.

The fitted models were assessed for their discriminating power using Receiving Operating Characteristic

(ROC) curve, Cohen’s Kappa (Heildke Skill Score), True Skill Statistics (TSS) Accuracy, Error_rate,

Precision, Sensitivity, Specificity, F1 score, Loglass, Gini-Coefficient. These measures were used to

evaluate the quality of predictions based on presence-absence data. Raster Stack was used to combine the

results of individual predictions by different model methods. All the models were assessed for overfitting.

The outcome of best fitted models was in probability of disease occurrence and was categorised into 6 risk

levels as No risk (NR), Very low risk (VLR), Low risk (LR), Moderate risk (MR), High risk (HR) and Very

high risk (VHR) for enabling the stakeholders to take appropriate control measures by suitably allocating

available resources.

13

5. ACCURACY OF PREDICTION

Serial No. Diseases Accuracy (%)

1. Anthrax 100

2. Babesiosis 99.45

3. Black quarter 98.49

4. Bluetongue 98.21

5. Classical swine fever 99.59

6. Enterotoxaemia 98.90

7. Fasciolosis 99.73

8. Foot and mouth disease 99.18

9. Hemorrhagic septicemia 96.15

10. Lumpy skin disease 94.09

11. Peste des petits ruminants 99.86

12. Sheep & Goat pox 97.25

13. Theileriosis 97.39

14. Trypanosomiasis 98.76

Aggregation and prediction of livestock diseases at district level leading to higher accuracy.

• Formula Used: The Accuracy of disease prediction was calculated using the following formula.

TP-True Positive Observations, TN-True Negative Observations, Total- Total observations.

▪ Internal Accuracy was performed using 10 years of data. Accuracy obtained was >90% for all the

diseases predicted.

▪ Despite the power of climate and disease risk models, considerable uncertainties remain, identifying

these uncertainties, highlighting importance of improved data may improve the model accuracy,

realism, confidence, together with translating uncertainties in model inputs into uncertainties in

model outputs, are important benefits of modelling.

14

6. MORAN’S I FOR CLUSTERING OF LIVESTOCK DISEASES

Moran's I is a tool that measures spatial autocorrelation (feature similarity) based on both feature

locations and feature values simultaneously. Given a set of features and an associated attribute, it evaluates

whether the pattern expressed is clustered, dispersed, or random. The tool calculates the Moran's I Index

value and both a Z score and p-value evaluating the significance of that index. In general, a Moran's Index

value near +1.0 indicates clustering while an index value near -1.0 indicates dispersion.

Autocorrelation tool, the null hypothesis states that there is no spatial clustering of the values associated

with the geographic features in the study area". When the p-value is small and the absolute value of the Z

score is large enough that it falls outside of the desired confidence level, the null hypothesis can be rejected.

If the index value is greater than 0, the set of features exhibits a clustered pattern. If the value is less than

0, the set of features exhibits a dispersed pattern.

7. R SOFTWARE

R is a programming language and software environment for statistical analysis, graphics

representation and reporting. R is a simple and effective programming language, which includes

conditionals, loops, user defined recursive functions and input and output facilities. R statistical software

version 3.6.2 (version 3.6.2, R Foundation for Statistical Computing, Dark and Stormy

Night. https://www.R-project.org/) was used as an integrated suite for data mining, calculation and

graphical display. Several R packages like openxlx, raster, RMySQL, rgdal, RColorBrewer, sqldf, sp, spdep,

xlsx, plyr, randomFores, dismo, SDMTool, dplyr, tmapand data tablewere used for data extraction, data

alignment, annotation, analysis, modelling and risk mapping.

https://www.r-project.org/#_blank

15

8. FOREWARNING OF LIVESTOCK DISEASE FOR EVERY MONTH

I. DISEASES, SPECIES AFFECTED CLINICAL SIGNS AND ITS PREVENTIVE

MEASURES.

Sl

No.

Disease Species

Affected

Clinical Signs Preventive Measures

1. African Swine

Fever (ASF)

Primarily

affects

domestic and

wild pigs

High Fever, Lethargy

and Weakness, Red

or Blue Skin

Discoloration, Pig

display respiratory

signs such as

coughing, difficulty

breathing, and nasal

discharge, causes

digestive symptoms,

including diarrhoea

and vomiting.

involves strict measures like

isolating new pigs, regularly

disinfecting facilities, and

controlling the movement of pigs

and pig-related items. Early

detection through surveillance,

educating farm personnel, and

managing wild boar populations

are crucial, while proper disposal

of infected material and quick

reporting of suspected cases

contribute to effective prevention

and control. Collaboration among

authorities, farmers, and the

public, along with clear

communication about ASF and its

preventive measures, plays a key

role in safeguarding pig

populations and the swine

industry.

2. Anthrax (AX) Most of the

mammals and

ruminants are

highly

susceptible.

Pigs and

Horses are

moderately

susceptible.

Carnivores are

relatively

resistant.

Convulsion and

sudden death with

oozing of blood from

natural orifices such

as rectum and nose

prior to death.

Occasionally oedema

develops in the throat

and shoulder over a

period of one week

before death.

Ring vaccination and reporting of

the disease is advised. Vaccination

to be done in consultation with the

veterinarians and as decided by

state animal husbandry authorities.

Strict biosecurity measures may be

followed. Carcass may be disposed

by deep burying covered with lime

powder. Contaminated area may

be disinfected with 4% formalin or

10% caustic soda. Grazing area

may be restricted.

3. Babesiosis (BA) Cattle. Cross

breeds are

more

susceptible.

High temperature,

jaundice like

symptoms, yellowish

mucosal membrane

of eye, rectum and

coffee colour urine.

Periodical application of

acaricides in and around the

animal shed and on the animals.

For therapeutic application,

Diaminazine or Imidocarb can be

useful.

16

4. Black Quarter

(BQ)

Common

disease of

cattle and

sheep, but

occasionally

goats and pigs

also suffer

from the

disease.

High fever and

lameness followed

by swelling in the

neck, shoulder,

lumbar, gluteal and

sacral regions. Skin

over the affected area

become dark and

crepitate on

palpation. Loss of

feed intake, colic,

lateral recumbency,

dyspnoea and death.

Affected animals may be treated

with suitable antibiotics.

Vaccination to be done in

consultation with the veterinarians

and as decided by state animal

husbandry authorities. Strict

biosecurity measures may be

followed. Grazing area may be

restricted. Carcass may be

disposed hygienically.

5. Bluetongue (BT) Sheep are more

susceptible

than goats.

Fever, swelling of

face, neck, eyelids

respiratory distress,

nasal discharge,

Salivation, necrotic

ulcers on tongue,

dental pad, gum, lips

hyperaemia of

muzzle and may

bleed at muco-

cutaneous junction.

Affected tongue may

become swollen,

cyanotic and purple

blue in colour –

‘bluetongue’.

Vector control using insecticides

and good water management.

Vaccination of susceptible animals

preferably in the month of May.

Do not shear sheep during winter

months. Restriction in animal

movement, segregation of affected

animals and symptomatic

treatment. Strict biosecurity

measures.

6. Enterotoxaemia

(ET)

Common

disease of

sheep and

goats

especially

among the

young animals.

Dullness,

opisthosomas,

convulsions, coma

and sudden death.

Affected adult sheep,

which survive for

several days May

show diarrhoea and

staggering.

Affected animals may be treated

with suitable antibiotics.

Vaccination to be done in

consultation with the veterinarians

and as decided by State Animal

Husbandry Authorities. Strict

biosecurity measures may be

followed. Carcass may be disposed

hygienically. Grazing area to be

restricted, stall fed, vitamins and

probiotics may be provided.

17

7. Fasciolosis (FA) Cattle, buffalo,

sheep and

goats.

Progressive anaemia,

pale mucous

membrane, sub-

mandibular oedema

(Bottle jaw), loss of

appetite, weakness,

isolated from flock

while grazing, loss in

production.

The animal should not be allowed

to graze in water stagnant fields or

submerged fodder should not be

given directly to the animals. The

submerged fodder can be

processed through hay/silage

preparation in order to destroy the

meta cercariae. The affected

animals can be treated with Carbon

tetrachloride/

Rafoxanide/Nitroxinils/

Niclofolan/Closantel/Oxyclozanid

e, under the strict supervision of

veterinarian.

8. Foot and Mouth

Disease (FMD)

Cattle, buffalo,

sheep, goats

and pigs are

often affected

domesticated

species, but the

disease is more

severe in cattle

and pigs.

Fever, loss of feed

intake, drop in milk

production, drooling

of saliva like ropey

string, vesicles

develop on the

tongue, lips, gums,

and palate and

eventually rupture.

Concurrent to oral

lesions, vesicles also

appear in inter digital

skin and coronary

band of the feet. The

animal may open and

close its mouth with a

characteristic

smacking sound.

Sheep and goats may

show lameness. In

pigs, lesions may be

seen on snout and

also on the feet.

Regular vaccination and

seromonitoring. Disinfection with

sodium carbonate (4%) or 10%

washing soda and strict biosecurity

measures to be followed and

animal movement may be

controlled.

18

9. Haemorrhagic

septicaemia (HS)

Common

disease for

cattle and

buffaloes, but

can also occur

among other

species such as

pigs, sheep,

goats and many

wild animals.

The disease starts

with high fever,

respiratory distress

and haemorrhages

maybe seen on the

mucous membranes.

There is

lachrymation, nasal

discharge, drop in

milk production and

anorexia. As the

disease progress ear

droops and the

animals will be

prostrated with

cyanosis of mucous

membranes. There

may be oedema along

the head, neck,

thorax, vulva and

anal areas. Sudden

death occurs within

few hours of clinical

signs.

Affected animals may be treated

with suitable antibiotics.

Vaccination to be done in

consultation with the veterinarians

and as decided by state animal

husbandry authorities. Strict

biosecurity measures may be

followed. Carcass may be disposed

hygienically and stress factors may

be reduced by following good

animal husbandry practices.

10. Lumpy skin

disease (LSD)

Common

disease for

Cattle, Buffalo

and other

domestic

animals

Fever, reduced milk

production and skin

nodules. Mastitis,

swelling of

peripheral lymph

nodes, loss of

appetite, increased

nasal discharge and

watery eyes are also

common. Temporary

or permanent

infertility occur

among infected cows

and bulls

Vaccination of susceptible animals

of above 3 months old age.

Restriction on animal movement,

strict biosecurity measures and

proper disposal of carcass.

11. Peste des Petits

Ruminants (PPR)

Goats and

sheep are most

affected

domestic

animals.

Fever, nasal and

ocular discharge,

respiratory distress,

necrotic lesions in

buccal mucosa, gum,

dental pad, palate,

tongue and diarrhoea.

Animals may die

because of

dehydration and

pneumonia.

Vaccination of susceptible animals

of above 3 months old age.

Restriction on animal movement,

strict biosecurity measures and

proper disposal of carcass.

19

12. Sheep and Goat

pox (SGP)

Sheep and

Goats

Respiratory distress

and pock lesions over

the non-hairy parts of

body, more common

in teat, udder,

scortum, head, neck,

ear, perineum, inner

aspect of thighs and

under tail.

Vaccination of susceptible animals

of above 3 months old age.

Symptomatic treatment of affected

animals. Restriction on animal

movement, strict biosecurity

measures and proper disposal of

carcass.

13. Classical Swine

Fever (CSF)

Pigs Fever,

Conjunctivitis,

purplish

discolouration of

snout, ears, abdomen,

inner side of the legs

and staggering gait.

Vaccination of susceptible

animals. Restriction on animal

movement, strict biosecurity

measures and proper disposal of

carcass.

14. Theileriosis (TE) Large

Ruminants.

Crossbreed

cattle are more

vulnerable.

High temperature,

yellowish eye,

sometime eyes may

be heavily swollen,

icteric mucosal

membrane of rectum,

dark yellowish urine,

sometime may reach

to coffee colour.

Antibiotic is of no

use to check the

fever.

Periodical application of

acaricides in and around the

animal shed and on the animals.

Therapeutic treatment with

Buparvaquone can be useful in

both early and advanced stages of

the infection.

15. Trypanosomiasis

(TR)

Domestic and

wild carnivores

and herbivores

including

cattle, buffalo,

horse, donkey,

camel, dog and

cats. Buffaloes

are known as

carriers.

Fluctuating high

fever which is not

responded by

antibiotics, swollen

lymph gland, chronic

emaciation and

weakness, loss of

appetite, gradual loss

of production.

The affected animal should be

treated with Diaminazine

compounds or chloride and

sulphate salts of Quinapyramine.

Periodical spray of insecticide in

and around animal shed to remove

the flies.

20

II. SIGNIFICANT WEATHER PARAMETERS FOR LIVESTOCK DISEASE

TABLE USING DISCRIMINANT FUNCTION ANALYSIS

SI.
No

Disease Names ML Derived Significant Parameters

1 African Swine Fever
Air Temperature, Delta-Precipitation, Delta-Leaf
Area Index

2 Anthrax
WET, Maximum Temperature, Wind Velocity, Soil
Temperature

3 Babesiosis
Delta-Relative Humidity, Precipitable-water, Delta-
Minimum Temperature

4 Black quarter
Wind Velocity, Potential Evapotranspiration, Air
Temperature

5 Bluetongue Wind Velocity, Soil Temperature

6 Classical Swine fever
Air Temperature, Enhanced Vegetation Index,
Relative Humidity

7 Enterotoxaemia
Soil Temperature, Precipitable water, Delta-
Precipitable water

8 Fascioliasis
Precipitable Water, Air Temperature, Precipitation-
rate

9 Foot and mouth disease
Delta-Temperature Minimum, Precipitation-rate,
Precipitable water, Soil Temperature

10 Hemorrhagic septicemia Precipitable Water, Delta-Pressure

11 Lumpy Skin Diseases
Delta-Vapour Pressure, Minimum Temperature, WET,
Delta- Enhanced Vegetation Index, Pressure

12 Peste des petits ruminants
Delta-Minimum Temperature, Precipitable water,
Delta-Relative Humidity

13 Sheep & Goat pox WET, Enhanced Vegetation Index, Relative Humidity

14 Theileriosis
Precipitable Water, Delta- Minimum Temperature,
Precipitation-rate

15 Trypanosomiasis WET, Precipitable-water, Delta-soil moisture

Table: Significant weather parameters govern the Livestock disease incidence (forecast)

21

9. DATA STORAGE, SECURITY AND VISUALIZATION

I. DATA STORAGE AND SECURITY

Before proceeding to the modeling phase, livestock data must be meticulously cleaned and stored in a

database to ensure data integrity and reliability. This critical step involves a systematic approach to

handling and preparing the data for subsequent analytical tasks. Cleaning the data encompasses various

processes, including the removal of duplicates, handling missing values, and correcting inconsistencies

or errors. These steps are essential to eliminate any biases or inaccuracies that could affect the outcomes

of the modeling process.

Once the data is cleaned, it is essential to store it in a robust and efficient database management

system such as MySQL. MySQL offers a reliable platform for data storage with powerful features for

data manipulation, querying, and maintenance. Using MySQL queries, the cleaned data can be

efficiently inserted into appropriate database tables, structured in a way that facilitates easy retrieval and

analysis. The process involves defining suitable schemas that reflect the data's structure and

relationships, ensuring optimal storage and access patterns. By leveraging MySQL's capabilities,

researchers can ensure that the livestock data is not only securely stored but also readily available for

advanced modeling techniques, ultimately contributing to more accurate and insightful analytical

outcomes .CSV File: Data is initially stored or received in CSV format.

▪ MySQL Database: The data from the CSV file is imported into a MySQL database for storage

and management.

▪ TLS/SSL Encryption: The connection between the application and the server is secured using

TLS/SSL encryption, ensuring data privacy and integrity during transmission.

▪ Server: The server hosts the MySQL database and serves as the endpoint for data retrieval and

storage

▪ Data Encryption: Protects data both in transit and at rest using tools like OpenSSL for

TLS/SSL encryption and MySQL Enterprise Encryption for data-at-rest encryption.

▪ Access Control: Ensures only authorized users access data, managed through MySQL's user

management and enhanced with MySQL Enterprise Edition features.

▪ Auditing and Logging: Tracks user activities for security monitoring, facilitated by MySQL

Enterprise Audit plugin and Audit beat.

▪ Data Masking: Obscures sensitive information within the database, leveraging MySQL's built-

in functions and enhanced with tools like DataMasker.

▪ Data Integrity Checks: Verifies data integrity using checksum functions in MySQL and

automated tools like Checksum for MySQL.

▪ Patch Management: Keeps the database updated with security patches obtained from

MySQL's official website and managed using tools like Patch Manager Plus.

22

▪ Incident Response: Preparedness for security incidents with documented playbooks and aided

by log analysis tools such as Splunk for real-time monitoring and response.

▪ Real-time Data Files Capture for Admins: Database Integration via PHP: As administrators,

we've integrated PHP to seamlessly interact with our database system. This enables us to

efficiently retrieve essential file data, including names, upload dates, types, and unique

identifiers.

▪ Dynamic Table Population: Through PHP scripting, our system dynamically populates an

organized table structure within the HTML framework. This ensures that every file entry is

accurately represented, providing admins with a comprehensive overview of available data

files.

▪ JavaScript Search Enhancement: Our implementation includes real-time search

functionality powered by JavaScript, specifically tailored for administrative use. Admins can

efficiently locate specific files by entering relevant keywords, streamlining the data retrieval

process and enhancing overall system usability.

II. DATA VISUALIZATION (INTERACTIVE LINE GRAPH)

Data visualization, particularly through interactive line graphs, plays a pivotal role in elucidating trends

and patterns within complex datasets. These graphs allow for dynamic exploration, enabling users to

zoom in on specific time periods, hover over data points for detailed information, and toggle various

data series on and off. Such interactivity enhances the user's ability to interpret and analyse data, making

it an invaluable tool in both exploratory data analysis and the communication of results. By transforming

raw data into visual insights, interactive line graphs facilitate a deeper understanding of temporal

changes and relationships within the dataset.

Frontend:

▪ HTML: Markup language for structuring the document.

▪ JavaScript: Scripting language for dynamic behavior and interaction.

▪ Chart.js: JavaScript library for creating interactive charts.

Fig. 9.1. Data Uploading to Database

23

Backend:

▪ PHP: Server-side scripting language for generating dynamic content.

▪ MySQL: Relational database management system for storing and managing data.

▪ MySQLi (MySQL Improved): PHP extension for interacting with MySQL databases using improved

methods.

Tools and Libraries:

▪ Fetch API: Web API used in JavaScript for making asynchronous HTTPS requests to the server.

▪ Chart.js: JavaScript library used for creating various types of charts, including line charts in this case.

Development Steps:

▪ Utilize the fetch API to retrieve data from the server.

▪ Extract pertinent information from the fetched data through data processing.

▪ Generate canvas elements and contexts for each chart dynamically.

▪ Employ Chart.js to instantiate charts programmatically.

▪ Apply Chart.js configurations for animation and styling effects.

▪ Append canvas and chart information to the chart container.

▪ Update the index to consecutively render the next chart in a loop.

▪ Enhance data processing speed through efficient backend API utilization and utilization of more

technical development language.

Fig. 9.2. Updated NADRES V2 website with interactive graphs

24

10. R PROGRAMMING SCRIPTS ALIGNED WITH THE METHODOLOGY

Step 1: Convert extracted data to CSV format (Weather parameter)

Information taken from several websites (GLDAS, MODIS, CRU, NCEP) must be converted

from a specific format into CSV format. The extracted risk variable data from GLDAS, NOAA and

MODIS will be in HDF format, which needs to be converted to GeoTIFF format, then convert from TIFF

format to CSV for analysis. There are five remote sensing variables (LST, NDVI, EVI, PET, LAI), and

those will be in hdf format. Separate codes for each variable are available, and provided below.

Procedure of extracting risk parameters from GLDAS, NOAA and MODIS

Extracting risk parameters data from GLDAS, NOAA, and MODIS involves a systematic and

scientifically rigorous approach. For GLDAS (Global Land Data Assimilation System), the process begins

by identifying relevant datasets that correspond to the risk parameters needed, such as soil moisture or

surface temperature. These datasets can be found on the NASA Goddard Earth Sciences Data and

Information Services Center (GES DISC) website. Once the appropriate datasets are identified, users must

define the temporal and spatial extents for their analysis. Data can be downloaded in formats such as

NetCDF or HDF using tools like Giovanni or direct FTP/HTTP access. Preprocessing steps include

converting data formats if necessary, regridding spatially and temporally, and handling missing values.

The data is then ready for analysis using statistical or modelling tools, with visualization performed

through software like R libraries.

For NOAA data, the process similarly begins with identifying the necessary datasets related to

risk parameters such as precipitation or drought indices. These datasets can be accessed through NOAA's

Climate Data Online (CDO) or the Operational Model Archive and Distribution System (NOMADS).

Users specify the temporal and spatial resolution needed and download the data in suitable formats like

NetCDF or CSV. Preprocessing involves converting and formatting the data, cleaning it by handling

outliers and missing values, and aggregating or disaggregating as required. Analysis is conducted using

statistical methods or machine learning algorithms, with visualizations created using tools like R or GIS

software.

Extracting data from MODIS (Moderate Resolution Imaging Spectroradiometer) involves

identifying datasets relevant to risk parameters such as land surface temperature or vegetation indices.

These datasets can be accessed through NASA’s Earth data portal or the LP DAAC (Land Processes

Distributed Active Archive Center). Users define the temporal and spatial scope, ensuring the temporal

resolution matches their analysis needs. Data is downloaded in formats like HDF or GeoTIFF using tools

provided by Earth data or LP DAAC’s Data Pool. Preprocessing includes converting HDF files using

tools like GDAL, reprojecting data to a common spatial reference system, and applying quality filters.

Analysis is then conducted using spatial analysis techniques, with remote sensing software like ENVI or

open-source tools such as QGIS and R libraries employed for data visualization.

Each step in these processes requires meticulous attention to detail and methodological rigor to ensure

accurate extraction and analysis of risk parameters from GLDAS, NOAA, and MODIS datasets. Step by

step processes showed in figures.

25

Fig. 10.1. Data extraction procedure from GLDAS

Fig. 10.2. Data extraction procedure from NOAA

Fig. 10.3. Data extraction procedure from MODIS

26

I. Code for Converting HDF Files to TIFF Format for Land Surface Temperature (LST) Data

Load required libraries

library(gdalUtils) # For converting HDF to TIFF

library(MODIS) # For extracting dates from filenames

library(qdap) # For string manipulation

The gdalUtils library facilitates the conversion of HDF files to TIFF format. The MODIS library is

used to extract date information from filenames. The qdap library assists with string manipulation

tasks.

List all HDF files in the "LST" directory

files <- list.files(path = "LST/", pattern = ".hdf", full.names = TRUE)

The list.files function retrieves a list of all HDF files within the specified directory, including the

full file paths.

Count the total number of files

j <- length(files)

The total number of HDF files is determined by calculating the length of the list of file paths. This

value is used to control the iteration in the subsequent processing loop.

Extract date values from filenames for output naming

date <- extractDate(files, asDate = TRUE)

The extractDate function extracts date information from the filenames. This information is used to

create meaningful output filenames for the TIFF files.

Generate output filenames for the TIFF files

filename <- paste0("LST/", substr(files, 23, 28), date$inputLayerDates,

".tif")

Output filenames for the TIFF files are generated by combining parts of the original filename with

the extracted date values.

Initialize loop index

i <- 1

The loop index i is initialized to start the processing from the first file.

Loop through each HDF file to convert it to TIFF

while (i <= j) {

 # Retrieve subdatasets within the HDF file

 sds <- get_subdatasets(files[i])

27

 # Convert the first subdataset (LST) to TIFF format

 gdal_translate(sds[1], dst_dataset = paste0("processed_", filename[i]))

 # Move to the next file

 i <- i + 1

}

Each HDF file is processed in a loop. Within the loop:

get_subdatasets(files[i]) retrieves subdatasets from the current HDF file.

gdal_translate(sds[1], dst_dataset = filename[i]) converts the first subdataset (assumed to be the

Land Surface Temperature data) to TIFF format and saves it using the generated filename.

The loop index i is incremented to proceed to the next file.

II. Code for Converting HDF Files to TIFF Format for Normalized Difference Vegetation Index

(NDVI) Data

files <- list.files(path="NDVI/",pattern = ".hdf",full.names = T)

The list.files function retrieves all HDF files within the "NDVI" directory, including their full file

paths.

j<-length(files)

The total number of HDF files is determined by calculating the length of the list of file paths. This

count is used for controlling the iteration in the processing loop.

date=extractDate(files,asDate = T)

The extractDate function extracts date information from the filenames, which is necessary for

creating meaningful output filenames for the TIFF files.

filename <- paste0("NDVI/",

substr(files,24,29),date$inputLayerDates,".tif")

Output filenames for the TIFF files are created by combining parts of the original filename with the

extracted date values.

i <-1

The loop index i is initialized to start processing from the first file.

while(i<=j){ sds <- get_subdatasets(files[i]);

sds[1] NDVI

gdal_translate(sds[1], dst_dataset = filename[i]);

i<-i+1;

}

28

In this loop:

get_subdatasets(files[i]) retrieves the subdatasets from the current HDF file.

gdal_translate(sds[1], dst_dataset = filename[i]) converts the first subdataset (assumed to be

NDVI data) to TIFF format and saves it using the generated filename.

The loop index i is incremented to process the next file.

III. Code for Converting HDF Files to TIFF Format for Enhanced Vegetation Index (EVI) Data

files <- list.files(path="NDVI/",pattern = ".hdf",full.names = T)

The list.files function retrieves all HDF files located in the "NDVI" directory, including their full

file paths.

j<-length(files)

The total number of HDF files is determined by calculating the length of the file path list. This

value is used to control the iteration in the processing loop.

date=extractDate(files,asDate = T)

The extractDate function extracts date information from the filenames, which is used to generate

appropriate output filenames for the TIFF files.

filename <- paste0("EVI/",

substr(files,24,29),date$inputLayerDates,".tif")

Output filenames for the TIFF files are created by combining parts of the original filename with the

extracted date values. Note the output directory is set to "EVI" instead of "NDVI."

i <-1

The loop index i is initialized to start processing from the first file.

while(i<=j){

sds <- get_subdatasets(files[i]);

#View(sds)

sds[2] EVI

gdal_translate(sds[1], dst_dataset = filename[i]);

i<-i+1;

}

29

In this loop:

get_subdatasets(files[i]) retrieves subdatasets from the current HDF file.

gdal_translate(sds[2], dst_dataset = filename[i]) converts the second subdataset (assumed to be EVI

data) to TIFF format and saves it using the generated filename.

The loop index i is incremented to process the next file.

IV. Code for Converting HDF Files to TIFF Format for Potential Evapotranspiration (PET) Data

files <- list.files(path="PET/",pattern = ".hdf",full.names = T)

The list.files function retrieves all HDF files located in the "PET" directory, including their full file

paths.

j<-length(files)

The total number of HDF files is determined by calculating the length of the list of file paths. This

value is used to control the iteration in the processing loop.

date=extractDate(files,asDate = T)

The extractDate function extracts date information from the filenames, which is necessary for

generating meaningful output filenames for the TIFF files.

filename <- paste0("PET/",

substr(files,23,28),date$inputLayerDates,".tif")

Output filenames for the TIFF files are created by combining parts of the original filename with the

extracted date values. The output directory is set to "PET."

i <-1

The loop index i is initialized to start processing from the first file.

while(i<=j){

sds <- get_subdatasets(files[i]);

#sds[3] PET

gdal_translate(sds[3], dst_dataset = filename[i]);

i<-i+1;

}

In this loop:

• get_subdatasets(files[i]) retrieves subdatasets from the current HDF file.

• gdal_translate(sds[3], dst_dataset = filename[i]) converts the third subdataset (assumed to

be PET data) to TIFF format and saves it using the generated filename.

• The loop index i is incremented to proceed to the next file.

30

V. Code for Converting HDF Files to TIFF Format for Leaf Area Index (LAI) Data

files <- list.files(path="LAI/",pattern = ".hdf",full.names = T)

The list.files function retrieves all HDF files located in the "LAI" directory, including their full file

paths.

j<-length(files)

The total number of HDF files is determined by calculating the length of the list of file paths. This

value is used to control the iteration in the processing loop.

date=extractDate(files,asDate = T,pos1 = 11,pos2 = 18)

The extractDate function extracts date information from the filenames. The pos1 and pos2

parameters specify the positions in the filename from which to extract the date. This information is

used to generate output filenames for the TIFF files.

filename <- paste0("LAI/",

substr(files,24,29),date$inputLayerDates,".tif")

Output filenames for the TIFF files are created by combining parts of the original filename with the

extracted date values. The output directory is set to "LAI."

i <-1

The loop index i is initialized to start processing from the first file.

while(i<=j){

 sds <- get_subdatasets(files[i]);

 # sds[2] LAI

 gdal_translate(sds[2], dst_dataset = filename[i]);

 i<-i+1;

}

In this loop:

• get_subdatasets(files[i]) retrieves subdatasets from the current HDF file.

• gdal_translate(sds[2], dst_dataset = filename[i]) converts the second subdataset (assumed

to be LAI data) to TIFF format and saves it using the generated filename.

• The loop index i is incremented to proceed to the next file.

31

VI. Code for Converting TIFF Files into CSV Format

library(raster)

library(data.table)

library(qdap)

The raster, data.table, and qdap libraries are loaded to handle raster data, process data tables, and

perform string operations, respectively.

files_latlong=c('./India_districts_latlong1.csv')

filename1 <- list.files(path="./LAI/",pattern = ".tif",full.names = T)

v = paste(2023:2024, collapse = "|")

filename2 = grep(v, filename1, value = T)

• files_latlong specifies the path to the CSV file containing latitude and longitude data.

• filename1 retrieves all TIFF files from the "LAI" directory.

• filename2 filters these files to include only those from the years 2023 and 2024.

j=1

for(j in 1:length(files_latlong)){

 df_total = data.frame()

 merge_data = data.frame()

 ss<-fread(files_latlong[j],header=T,check.names=F,data.table = F)

 x<-ss$lat

 y<-ss$long

 data<-data.frame(y,x)

 latlon1<-CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84

+towgs84=0,0,0')

 coordinates1 = SpatialPoints(data,latlon1)

 sinus1 = CRS("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181

+b=6371007.181 +units=m +no_defs")

 coordinates_sinus1 = spTransform(coordinates1,sinus1)

 df_total<-NULL

• df_total and merge_data are initialized as empty data frames for storing results.

• Latitude and longitude data are read using fread and converted into a spatial object.

• Coordinate reference systems are defined and used to transform the spatial coordinates.

 for(i in 1:length(filename2))

 {

 my<-raster(filename2[i])

 my<-stack(my)

 dd <- extract(my, coordinates1)

 tempf = which(is.na(dd))

32

 if(length(tempf) != nrow(dd))

 {

 df_total <- rbind(df_total, dd)

 }

 }

 df_total = as.matrix(df_total)

 df_total=df_total*0.1

 df_total =as.data.frame(df_total)

 col_names= gsub("\\.","-",colnames(df_total))

 df_total=setNames(df_total,substr(col_names,8,17))

 merge_data<-cbind(ss,df_total)

 f_name=paste(beg2char(files_latlong[j],".",2),"_LAI_2023.csv",sep="")

 fwrite(merge_data,f_name,col.names = T,row.names = F,sep=",")}

• Each TIFF file is processed to extract raster values at the specified spatial coordinates.

• Missing values are handled, and the extracted data is normalized and converted to a data

frame.

• Column names are adjusted, and the results are merged with the original latitude and

longitude data.

• The merged data is saved to a CSV file with a name based on the original file.

33

VII. Code for Converting Extracted Data from CRU (NetCDF Format) to CSV Format

Start by going to the Climatic Research Unit’s (CRU) data portal using a web browser. Look for

the section labelled "Climate Data." Once there, pick the desired dataset, such as temperature,

precipitation, or humidity. Each dataset comes with a description that explains its coverage, resolution,

and variables. Read the documentation to understand the data format, variable names, and any

preprocessing that was done. Follow the steps shown in the accompanying image for a visual guide. Go

to the download page and select the NetCDF file format, which works well with many analysis tools.

Choose the time period and area needed, then download the .nc file, ensuring there is enough storage

space and a good internet connection. After downloading, check the file size to ensure its correct, and

unpack it if compressed using tools like tar or unzip. Open the NetCDF file in preferred software, such as

R. Examine the data structure, including dimensions, variables, and attributes. Perform any necessary

preprocessing, like masking, interpolation, or aggregation, to fit the data to specific research needs. By

following these steps, it is easy to download and use climate data from the CRU website for analysis,

aiding in a better understanding of climate patterns.

After obtaining the NetCDF files, use the following R code to convert them to csv format for easier data

handling and analysis.

#Load the necessary package

library(ncdf4)

library(raster)

library(data.table)

library(qdap)

#install.packages("qdap")

library(sqldf)

Fig. 10.4. Data extraction processes from CRU (NetCDF format data)

34

library(reshape)

These libraries are loaded to manage NetCDF files, manipulate raster data, handle data tables, perform

string operations, and reshape data.

Define file paths for NetCDF files

files_nc <- list.files(path = "C:\\Users\\ICAR

Bangalore\\Desktop\\Aj\\Weather Data\\NOAA (Ncep-Ncar)\\Precipitable

water\\", pattern = "*.nc$", full.names = TRUE, recursive = TRUE)

Define file paths for CSV files containing latitude and longitude

files <- "India_Dist_2021_new.csv"

Define parameters for the data

pars <- c("Precipitable water")

• files_nc lists all NetCDF files in the specified directory.

• files specifies the path to the CSV file containing latitude and longitude data.

• pars defines the parameters being processed, in this case, "Precipitable water".

m <- 1

k <- 1

for (m in 1:length(files_nc)) {

for (k in 1:length(files)) {

Read latitude and longitude data from CSV

ss1 <- read.csv(files[k], sep = ",", header = TRUE)

 lg_lt1 <- cbind(ss1$long, ss1$lat)

 latlon1 <- CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84

+towgs84=0,0,0')

 coordinates1 <- SpatialPoints(lg_lt1, latlon1)

 sinus1 <- CRS("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181

+b=6371007.181 +units=m +no_defs")

 coordinates_sinus1 <- spTransform(coordinates1, sinus1)

 # Load NetCDF file and get number of bands

 banddata <- raster(files_nc[m+1])

 z <- nbands(banddata)

 # Initialize data frame to store results

 df_total <- data.frame(c(1:(nrow(ss1) + 1)), stringsAsFactors = FALSE)

35

 for (i in 1:z) {

 # Extract raster data for each band

 mydata <- raster(files_nc[m], i)

 crs(mydata) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84

+towgs84=0,0,0"

 ff <- extract(mydata, coordinates_sinus1)

 # Extract and format date information

 dd <- substr(getZ(mydata), 1, 7)

 ff <- c(as.character(dd), ff)

 df_total <- cbind(df_total, ff)

 gc() # Clean up memory

 }

 # Prepare final data frame for export

 df_total <- df_total[, 2:ncol(df_total)]

 colnames(df_total) <- as.character(unlist(df_total[1,]))

 final_df <- cbind(ss1, df_total[2:nrow(df_total),])

 # Generate filename for output

filename <- paste0(beg2char(files[k], "."), "_", pars[m], "Precipitable

water_india 1979-2024.csv")

print(filename)

Write final data to CSV

fwrite(final_df, filename, row.names = FALSE, col.names = TRUE, sep =

",")

 }

}

• Latitude and longitude data are read from the CSV and converted to spatial points.

• Each NetCDF file is processed to extract raster data for all bands.

• The extracted data is combined with the latitude and longitude data into a final data frame.

• The final data frame is saved to a CSV file, with a name based on the parameter and input file.

36

Step 2: Dimensionality Reduction of Risk Variables Using Principal Component

Analysis (PCA)

Apply Principal Component Analysis (PCA) to reduce dimensionality, retaining essential weather

patterns and relationships. This process helps identify impactful weather variables efficiently for risk

assessment.

Load Required Libraries

library(stats) # Provides functions for statistical calculations

including PCA

library(dplyr) # Used for data manipulation

These libraries are loaded to utilize statistical functions and data manipulation capabilities in R.

Read the NADRES parameters file

mydata <- read.csv("Inputfile.csv")

Extract column names of specific components (columns 18 to end)

c_names <- colnames(mydata[18:ncol(mydata)])

Extract specific components for PCA analysis

mydata_pca <- mydata[, c(18:ncol(mydata))]

Extract non-PCA components (columns 1 to 17)

mydata2 <- mydata[, c(1:17)]

• mydata contains the dataset with NADRES parameters.

• c_names captures the names of the PCA components.

• mydata_pca isolates the columns used for PCA.

• mydata2 contains other relevant variables excluding the PCA components.

Convert Soil moisture values to millimeters by multiplying by 86400

mydata_pca$Soil_moisture <- mydata_pca$Soil_moisture * 86400

Define a function to replace zero values with a small non-zero value (0.0001)

replace_zeros <- function(x) {

 ifelse(x == 0, 0.0001, x)

}

Apply the function to each column of the dataset

mydata_pca <- lapply(mydata_pca, replace_zeros)

37

Convert the list back to a data frame

mydata_pca <- as.data.frame(mydata_pca)

• Soil moisture values are scaled to millimeters.

• replace_zeros function ensures no zero values are present in the dataset, substituting them

with a minimal value (0.0001).

• The function is applied to all columns of mydata_pca, and the result is converted back to a

data frame.

Perform PCA on the dataset

pca_mydata <- princomp(mydata_pca)

Display number of observations

pca_mydata$n.obs

Display PCA scores

pca_mydata$scores

• princomp function performs PCA on the mydata_pca dataset.

• The number of observations and PCA scores are accessed for analysis.

Combine PCA scores with the other variables

pca_results <- cbind(mydata2, pca_mydata$scores)

Rename columns of PCA components

colnames(pca_results)[18:ncol(pca_results)] <- c_names

• PCA scores are combined with non-PCA variables from mydata2.

• Column names for the PCA components are updated to match c_names.

Write the PCA results to a new CSV file

write.csv(pca_results, "PCAappliedfile.csv")

The combined dataset with PCA results is saved to a CSV file for further use.

38

Step-3: Modelling Approaches (Risk Prediction)

Part 1: Analysis, forecasted results and disease maps at the state level

In this step, Data on risk factors and disease incidences were systematically integrated from

a comprehensive database. After merging these datasets, 16 distinct machine learning algorithms

were applied for predictive modelling. The accuracy of these models was rigorously evaluated using

ten different validation techniques, ensuring robust assessment. The results were meticulously

documented in an Excel spreadsheet, categorized by state for clarity and ease of interpretation.

Furthermore, geospatial maps were created to visualize the predictive outcomes across states,

enhancing data interpretability and enabling more precise state-level disease risk predictions. This

methodological approach significantly improves the accuracy and reliability of the predictions.

#"C:\Program Files\R\R-3.3.3\bin\Rscript" nadres_final_mod.R 2018 2008 7

This line indicates how to run the R script nadres_final_mod.R from the command line, with

arguments specifying the forecast month and range of years.

month_number= forecasting for which month(number example: 01 or 02 or 04

or 06) ; year_number=2015 (from which year considering data);

current_year=2024 (upto which year you are going to forecast);

First, you must specify which month you are forecasting using how many years' worth of data

(year_number to Current_year).

nadres_func=function(current_year,year_number,month_number)

Defines a function nadres_func that takes three parameters: current_year, year_number, and

month_number. This function handles data processing and forecasting tasks.

print(current_year)

print(year_number)

print(month_number)

library(RMySQL)

library(rgdal)

library(RColorBrewer)

library(sqldf)

library(data.table)

library(reshape2)

library(imputeMissings)

require(sp)

require(spdep)

39

require(rms)

library(xlsx)

library(plyr)

library(dplyr)

library(randomForest)

library(dismo)

library(psych)

library(pROC)

library(SDMTools)

library(BIOMOD)

library(ROCR)

library(caret)

library(MLmetrics)

Loads various libraries required for data manipulation, spatial analysis, machine learning, and

performance metrics.

##Database Connection and Data Import

df_total<-NULL

mydb = dbConnect(MySQL(), user="base user id", password='Password',

dbname='databasename', host='hostid')

month_name=data.frame(

month=c(1:12),

month_names=c("January","February","March","April","May","June","July","A

ugust","September","October","November","December")

)

Connects to a MySQL database and imports data from a CSV file. month_name data frame maps

month numbers to names.

##Data Preparation

ss_final<-fread(file="PCAappliedInputfile.csv",header=T,check.names = F)

ss=ss_final[ss_final$month==month_number,]

#write.csv(ss,"ss_dec_data.csv")

ss_lag=ss_final[ss_final$month==month_number-1,]

colnames(ss_lag)[18:63]=paste0(colnames(ss_lag)[18:63],"_lag")

ss=cbind(ss,ss_lag[,18:63])

names(ss)

col_pars=names(ss)

vars= paste(col_pars[7:ncol(ss)],collapse = "+")

vars=paste0(vars,"+rating")

options(verbose = F)

40

Filters data for the current month and the previous month, then combines them. Lag variables are

created by appending suffixes to column names.

Database Query and Fetching Data

rs<-dbSendQuery(mydb,"SELECT

state.state_name,state.state_id,district.district_id,

district.district_name, dval_ob_district_final.year_id,

dval_ob_final.month_id,species.species_name, disease.disease_id,

disease.disease_name, dval_ob_district_final.number_outbreak,

dval_ob_district_final.number_susceptible,

dval_ob_district_final.number_attack, dval_ob_district_final.number_death

FROM dval_ob_district_final

INNER JOIN state on state.state_id=dval_ob_district_final.state_id

INNER JOIN district on

district.district_id=dval_ob_district_final.district_id

INNER JOIN disease on

disease.disease_id=dval_ob_district_final.disease_id

INNER JOIN species on

species.species_id=dval_ob_district_final.species_id")

data1 = fetch(rs, n=-1)

colnames(data1)=c("state_name","state_id","district_id","district_name","

year","month","species_name","disease_id","disease_name",

"number_of_outbreaks","number_susceptible","number_of_attacks","number_of

_deaths")

Sends a SQL query to fetch disease-related data from the database and stores it in data1.

Import or read shapefile

k1=readOGR("shapefile")

k1@data

names(k1)[1]<-"DISTRICT"

names(k1)[2]<-"ST_NM"

names(k1)[3]<-"ST_CEN_CD"

names(k1)[4]<-"DT_CEN_CD"

ll_coord=data.frame(coordinates(k1))

final_eval=NULL

Reads a shapefile for spatial data of districts and states in India

##write disease data file to external folder for further analysis

fwrite(data1,paste0("dist_out_nadres_",gsub("\\:","_",Sys.time()),".csv")

)

41

determine diseases / assign ID to the unique disease, and then determine the diseases you want to

analyze.

for(disease in c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189))

The livestock diseases are arranged alphabetically, and IDs are

assigned to them in the database.

{

 k=k1

 rat_df=c(1:nrow(k))

 df=data1

This loop iterates over a predefined list of disease IDs. For each disease, it sets up the necessary

variables and prepares to process the data related to that disease.

if(disease==12)

{

d1=df[df$year>=1987 & df$year<=current_year & df$disease_id==disease &

df$month==month_number,]

 } else d1=df[df$year>=year_number & df$year<=current_year &

df$disease_id==disease & df$month==month_number,]

d2=d1[,c("state_name","district_name","disease_name","month","year")]

Filters the df data frame to include records for the current disease, within the specified year and

month range. The filtered data is used for further analysis.

assigning rating to the years to remove noise

yr_rt=data.frame(year=c(year_number:current_year),rating=c(1:10))

st_dt=data.frame(k@data[,c("ST_NM","DISTRICT")])

d2$state_name=toupper(d2$state_name)

st_dt$rating=0

for (i in 1:nrow(st_dt)) {

rt=yr_rt[yr_rt$year==max(d2[which(d2$state_name==as.character(st_dt[i,"ST

_NM"]) &

d2$district_name==as.character(st_dt[i,"DISTRICT"])),"year"]),"rating"]

 if(sum(rt)!=0)

 st_dt[i,"rating"]=rt

 }

rat_df=cbind(rat_df,st_dt)

colnames(rat_df)[c(2,3)]=c("state_name","district_name")

Assigns ratings to each year to minimize noise in the data. Ratings are used to evaluate the

relevance of the data based on the most recent year of data available.

42

data<-subset(data1,data1$year>=year_number & data1$disease_id==disease)

df<-sqldf("SELECT

state_id,state_name,district_id,district_name,disease_id,disease_name,mon

th,sum(number_of_outbreaks)as outbreak FROM data GROUP BY

state_id,district_id,state_name,district_name,month,disease_id,disease_na

me",drv="SQLite")

ss1<-subset(ss,ss$disease_id==disease)

Aggregates the data by summing up the number of outbreaks for each state, district, and month.

This step ensures that data is compiled in a format suitable for analysis.

dd<-merge(ss1, df, by =

c("state_id","district_id","disease_id","month"),all.x=TRUE)

attach(dd,warn.conflicts = F)

out<-data.frame(outbreak)

out<-ifelse(outbreak>=1,1,0)

out[is.na(out)]<-0

final<-cbind(dd,out)

Merges the PCA-applied data (ss1) with aggregated disease data (df). Creates a binary outcome

variable out based on whether outbreaks occurred or not, and prepares the final dataset for modelling.

final1<-final[which(final$disease_id==disease &

final$month==month_number),]

cat("For disease: ",as.character(unique(ss1[,"disease_name"])),"\n")

ncs= ncol(final1)-5

temp = data.frame(final1[,8:ncs])

for(i in 1:ncol(temp)){

temp[is.na(temp[,i]), i] <- mean(temp[,i], na.rm = TRUE)

 }

Selects the relevant rows for the current disease and month, and handles missing values in the data

by replacing them with column means.

final2<-

cbind(final1$state_id,final1$state_name.x,final1$district_id,final1$distr

ict_name.x,final1$disease_id,final1$disease_name.x,final1$out,final1$mont

h,temp)

setnames(final2,old=c("final1$state_id","final1$state_name.x","final1$dis

trict_id","final1$district_name.x","final1$disease_id","final1$disease_na

me.x","final1$out","final1$month"),new=c("state_id","state_name","distric

t_id","district_name","disease_id","disease_name","out","month"))

final2=join(data.frame(final2),rat_df,match="full",type="left")

formula=paste("out ~",vars)

formula=as.formula(formula)

43

final2[is.na(final2$rating),"rating"]=0

Constructs the final dataset final2 by combining various columns and ensuring proper naming. Also

joins with the rating data and prepares the formula for modeling.

kappa=roc=tss=array()

sensitivity<- numeric(1)

specificity<- numeric(1)

precision <- numeric(1)

recall <- numeric(1)

f1_score <- numeric(1)

mcc <- numeric(1)

accuracy <- numeric(1)

error_rate <- numeric(1)

model<-glm(formula,data = final2, family

=binomial(link="logit"),maxit=20)

prediction_glm<-predict(model,type="response")

tmp_df=cbind(final2,prediction_glm)

glkappa<-cohen.kappa(data.frame(final2$out,prediction_glm))

kappa[1]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,prediction_glm)

roc[1]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,prediction_glm)

max_thres=max(glvv[[8]])

glxx<-confusion.matrix(final2$out,prediction_glm,max_thres)

tss[1]<-round(TSS.Stat(glxx),3)

binary_predictions <- ifelse(prediction_glm > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[1] <- TP / (TP + FN)

specificity[1] <- TN / (TN + FP)

precision[1] <- TP / (TP + FP)

f1_score[1] <- 2 * (precision * sensitivity) / (precision +sensitivity)

mcc[1] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[1] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[1] <- 1 - accuracy

Fits a generalized linear model (GLM) using logistic regression. Evaluates the model's performance

by calculating various metrics such as kappa, ROC AUC, TSS, sensitivity, specificity, precision,

recall, F1 score, MCC, accuracy, and error rate.

44

library(randomForest)

n2 <- randomForest(as.formula(formula), data = final2, ntree = 8000, mtry

= 100, maxdepth = 900)

prediction_rf<-predict(n2,type="response")

tmp_df=cbind(final2, prediction_rf)

glkappa<-cohen.kappa(data.frame(final2$out,prediction_rf))

kappa[2]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,prediction_rf)

roc[2]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,prediction_rf)

max_thres=max(glvv[[8]])

glxx<-confusion.matrix(final2$out,prediction_rf,max_thres)

tss[2]<-round(TSS.Stat(glxx),3)

binary_predictions <- ifelse(prediction_rf > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[2] <- TP / (TP + FN)

specificity[2] <- TN / (TN + FP)

precision[2] <- TP / (TP + FP)

f1_score[2] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[2] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[2] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[2] <- 1 - accuracy[2]

The code trains a Random Forest model with specified parameters and uses it to predict

outcomes. It then integrates these predictions with the original dataset to evaluate model performance.

Cohen’s Kappa is calculated to measure agreement between observed and predicted values, while

ROC AUC assesses the model's classification performance. The optimal prediction threshold is

determined, and the True Skill Statistic (TSS) is computed. Finally, various performance metrics,

including sensitivity, specificity, precision, F1 score, Matthews Correlation Coefficient (MCC),

accuracy, and error rate, are calculated to assess the model's overall effectiveness.

library(mgcv)

model_gam <- gam(formula, data = final2, family = binomial(link =

"logit"))

predicted_gam<- predict(model_gam, type = "response")

tmp_df1=cbind(final2,predicted_gam)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_gam))

kappa[4]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_gam)

roc[4]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_gam)

45

max_thres=max(glvv[[8]])

glgam<-confusion.matrix(final2$out,predicted_gam,max_thres)

tss[4]<-round(TSS.Stat(glgam),3)

binary_predictions <- ifelse(predicted_gam > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[4] <- TP / (TP + FN)

specificity[4] <- TN / (TN + FP)

precision[4] <- TP / (TP + FP)

f1_score[4] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[4] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[4] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[4] <- 1 - accuracy[4]

The code trains a Generalized Additive Model (GAM) with a logistic link function using

the mgcv package and makes predictions based on this model. It combines the predictions with the

original dataset for further evaluation. Cohen’s Kappa is computed to measure agreement between

the observed and predicted values, while ROC AUC evaluates the model's performance. The optimal

prediction threshold is identified, and the True Skill Statistic (TSS) is calculated. Performance metrics

such as sensitivity, specificity, precision, F1 score, Matthews Correlation Coefficient (MCC),

accuracy, and error rate are then calculated to assess the model's effectiveness.

##install.packages("earth")

library(earth)

mars_model <- earth(formula, data = final2)

predicted_mars <- predict(mars_model, newdata = final2)

tmp_df2=cbind(final2,predicted_mars)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_mars))

kappa[5]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_mars)

roc[5]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_mars)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_mars,max_thres)

tss[5]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_mars > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

46

sensitivity[5] <- TP / (TP + FN)

specificity[5] <- TN / (TN + FP)

precision[5] <- TP / (TP + FP)

f1_score[5] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[5] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[5] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[5] <- 1 - accuracy[5]

The MARS model was applied to predict binary outcomes based on the features in the

final2 dataset. It uses a non-parametric approach to model complex, nonlinear relationships. After

training the model, predictions were generated, and performance was evaluated using metrics such as

Cohen's kappa, ROC AUC, and confusion matrix statistics. The model's effectiveness was quantified

through various metrics, including sensitivity, specificity, and F1 score, revealing its ability to handle

non-linearities in the data.

#install.packages("cubist)

library(Cubist)

param_grid <- expand.grid(committees = c(3, 7, 15), neighbors = c(5, 6,

7))

cubist_grid <- train(x = final2[, -c(1:7)], # Features

y = final2$out, # Response variable

method = "cubist", # Cubist method

trControl = trainControl(method = "cv", number = 5), # 5-fold cross-

validation

 tuneGrid = param_grid # Parameter grid

)

predicted_cubist <- predict(cubist_grid, newdata = final2, method =

"response")

tmp_df2=cbind(final2,predicted_cubist)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_cubist))

kappa[5]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_cubist)

roc[5]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_cubist)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_cubist,max_thres)

tss[5]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_cubist > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[5] <- TP / (TP + FN)

specificity[5] <- TN / (TN + FP)

47

precision[5] <- TP / (TP + FP)

f1_score[5] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[5] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[5] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[5] <- 1 - accuracy[5]

The Cubist model, a rule-based approach that combines regression trees with instance-

based learning, was used to model the binary outcome variable. Hyperparameter tuning was

performed through a grid search, optimizing the number of committees and neighbors. Performance

metrics, including Cohen's kappa and ROC AUC, were calculated to assess the model's predictive

accuracy. The confusion matrix was used to derive additional performance metrics such as sensitivity,

specificity, and F1 score, providing insights into the model's classification effectiveness.

#install.packages("xgboost")

library(xgboost)

X <- as.matrix(final2[, -(1:7)]) # Predictor variables

y <- final2[, "out"] # Response variable

params <- list(

booster = "gbtree", # Tree-based model

objective = "binary:logistic", # Binary classification

max_depth = 6, # Maximum tree depth

eta = 0.3, # Learning rate

nrounds = 20 # Number of boosting rounds (similar to maxit)

)

xgb_model <- xgboost(data = X, label = y, params = params, nrounds =

params$nrounds)

predicted_xgb <- predict(xgb_model, X)

tmp_df3=cbind(final2,predicted_xgb)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_xgb))

kappa[6]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_xgb)

roc[6]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_xgb)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_xgb,max_thres)

tss[6]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_xgb > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[6] <- TP / (TP + FN)

specificity[6] <- TN / (TN + FP)

precision[6] <- TP / (TP + FP)

48

f1_score[6] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[6] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[6] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[6] <- 1 - accuracy[6]

The XGBoost model, known for its gradient boosting capabilities, was used for binary

classification. The model was configured with parameters suited for boosting, such as learning rate

and maximum tree depth. Predictions were made, and performance metrics including Cohen's kappa,

ROC AUC, and confusion matrix statistics were computed. The model's predictive power was

evaluated using accuracy, sensitivity, and other performance measures, highlighting its effectiveness

in handling large datasets and complex patterns.

library(e1071)

svm_model <- svm(formula, data = final2, kernel = "radial", cost = 1)

Adjust kernel and cost as needed

predicted_svm <- predict(svm_model, final2, type = "response")

tmp_df4=cbind(final2,predicted_svm)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_svm))

kappa[7]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_svm)

roc[7]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_svm)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_svm,max_thres)

tss[7]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_svm > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[7] <- TP / (TP + FN)

specificity[7] <- TN / (TN + FP)

precision[7] <- TP / (TP + FP)

f1_score[7] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[7] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[7] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[7] <- 1 - accuracy[7]

An SVM model with a radial basis function kernel was applied to classify the binary

outcome. The model was trained with specific cost parameters to balance margin and error.

Predictions were evaluated using Cohen's kappa, ROC AUC, and other classification metrics. The

confusion matrix provided detailed insights into the model's sensitivity, specificity, precision, and F1

score, demonstrating its capability in separating classes in high-dimensional space.

49

library(rpart)

tree_model <- rpart(formula, data = final2, method = "class")

predicted_tree_prob <- predict(tree_model, final2, type = "prob")[, "1"]

tmp_df5=cbind(final2,predicted_tree_prob)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_tree_prob))

kappa[8]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_tree_prob)

roc[8]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_tree_prob)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_tree_prob,max_thres)

tss[8]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_tree_prob > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[8] <- TP / (TP + FN)

specificity[8] <- TN / (TN + FP)

precision[8] <- TP / (TP + FP)

f1_score[8] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[8] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[8] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[8] <- 1 - accuracy[8]

The decision tree model, implemented with the rpart package, was used to predict the

binary outcome variable. This model generates a tree-like structure to make decisions based on feature

values. Predictions were assessed using Cohen's kappa, ROC AUC, and confusion matrix metrics.

Performance evaluation included sensitivity, specificity, and accuracy measures, illustrating the

model's effectiveness in capturing decision rules from the data.

library(glmnet)

X <- as.matrix(final2[, -(1:7)]) # Predictor variables

y <- final2[, "out"] # Response variable

lasso_cv <- cv.glmnet(X, y, alpha = 1)

optimal_lambda <- lasso_cv$lambda.min

lasso_model <- glmnet(X, y, alpha = 0, lambda = optimal_lambda)

predicted_lasso <- predict(lasso_model, newx = X)

final2$predicted_lasso <- predicted_lasso

tmp_df6=cbind(final2,predicted_lasso)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_lasso))

kappa[9]<-round(glkappa[[2]],3)

50

glroc<-roc(final2$out,predicted_lasso)

roc[9]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_lasso)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_lasso,max_thres)

tss[9]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_lasso > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[9] <- TP / (TP + FN)

specificity[9] <- TN / (TN + FP)

precision[9] <- TP / (TP + FP)

f1_score[9] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[9] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[9] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[9] <- 1 - accuracy[9]

The Lasso regression model, implemented using glmnet, was used for feature selection and

prediction in binary classification. By applying L1 regularization, the model penalizes less important

features, enhancing model interpretability. Predictions were evaluated with metrics such as Cohen's

kappa, ROC AUC, and confusion matrix statistics. The model's performance in terms of accuracy,

sensitivity, and F1 score was assessed, demonstrating its ability to handle high-dimensional data and

perform feature selection.

#install.packages("fda")

library(fda)

fda_model <- lm(formula, data = final2)

predicted_fda <- predict(fda_model)

final2$predicted_fda <- predicted_fda

tmp_df8=cbind(final2,predicted_fda)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_fda))

kappa[10]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_fda)

roc[10]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_fda)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_fda,max_thres)

tss[10]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_fda > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

51

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[10] <- TP / (TP + FN)

specificity[10] <- TN / (TN + FP)

precision[10] <- TP / (TP + FP)

f1_score[10] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[10] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[10] <- (TP + TN) / (TP + TN + FP + FN)

error_rate <- 1 - accuracy[10]

The Functional Data Analysis (FDA) model was applied to analyze and predict binary

outcomes based on functional data. This approach fits a model using functional data representation,

which is suitable for capturing complex patterns over a continuum. By predicting outcomes based on

these functional features, the model enhances interpretability and handles data variability effectively.

Model performance was evaluated using Cohen's kappa, ROC AUC, and confusion matrix metrics,

assessing its accuracy, sensitivity, and overall predictive capability.

library(caret)

probit_model <- train(formula, data = final2, method = "glm", family =

binomial(link = "probit"))

predicted_probit = predict(probit_model)

final2$predicted_probit <- predicted_probit

tmp_df8=cbind(final2,predicted_probit)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_probit))

kappa[10]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_probit)

roc[10]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_probit)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_probit,max_thres)

tss[10]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_probit > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[10] <- TP / (TP + FN)

specificity[10] <- TN / (TN + FP)

precision[10] <- TP / (TP + FP)

f1_score[10] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[10] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[10] <- (TP + TN) / (TP + TN + FP + FN)

error_rate <- 1 - accuracy[10]

52

The Probit regression model was utilized for binary classification by estimating

probabilities using a cumulative normal distribution. This model addresses non-linear relationships

between predictors and binary outcomes. Its performance was evaluated through Cohen's kappa, ROC

AUC, and confusion matrix, highlighting its accuracy, sensitivity, and ability to manage classification

tasks effectively.

library(kernlab)

gp_model <- gausspr(formula, data = final2)

predicted_gp <- predict(gp_model, newdata = final2)

gp_model <- gausspr(formula, data = final2, kernel = "rbfdot", kpar =

list(sigma = 0.1), cost = 1)

predicted_gp <- predict(gp_model, newdata = final2)

tmp_df9=cbind(final2,predicted_gp)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_gp))

kappa[11]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_gp)

roc[11]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_gp)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_gp,max_thres)

tss[11]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_gp > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[11] <- TP / (TP + FN)

specificity[11] <- TN / (TN + FP)

precision[11] <- TP / (TP + FP)

f1_score[11] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[11] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[11] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[11] <- 1 - accuracy[11]

The Gaussian Process (GP) model was employed to predict binary outcomes by leveraging

a distribution over functions. This model is advantageous for handling complex, non-linear

relationships in high-dimensional data. Performance metrics such as Cohen's kappa, ROC AUC, and

confusion matrix were used to evaluate the model's accuracy, sensitivity, and classification

effectiveness.

53

#install.packages("neuralnet")

library(neuralnet)

nn_model <- neuralnet(formula, data = final2, hidden = c(5, 2),

linear.output = FALSE)

predicted_nn <- predict(nn_model, final2)

tmp_df10=cbind(final2,predicted_nn)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_nn))

kappa[12]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_nn)

roc[12]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_nn)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_nn,max_thres)

tss[12]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_nn > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[12] <- TP / (TP + FN)

specificity[12] <- TN / (TN + FP)

precision[12] <- TP / (TP + FP)

f1_score[12] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[12] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[12] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[12] <- 1 - accuracy[12]

The Neural Networks (NN) model was employed for binary classification by learning

complex patterns through interconnected layers. This model can capture non-linear relationships

effectively. Performance was measured using Cohen's kappa, ROC AUC, and confusion matrix

metrics, which assessed the model's accuracy, sensitivity, and overall classification performance.

library(nnet)

multinom_model <- multinom(formula, data = final2)

predicted_multinom_probs <- predict(multinom_model, final2, type =

"probs")

final2$predicted_multinom_probs <- predicted_multinom_probs

tmp_df11=cbind(final2,predicted_multinom_probs)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_multinom_probs))

kappa[13]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_multinom_probs)

roc[13]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_multinom_probs)

max_thres=max(glvv[[8]])

54

glmars<-confusion.matrix(final2$out,predicted_multinom_probs,max_thres)

tss[13]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_multinom_probs > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[13] <- TP / (TP + FN)

specificity[13] <- TN / (TN + FP)

precision[13] <- TP / (TP + FP)

f1_score[13] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[13] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[13] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[13] <- 1 - accuracy[13]

The Multinomial Regression model was used to predict outcomes with more than two

categories by estimating probabilities for each category. This model extends logistic regression to

handle multi-class classification problems. Performance evaluation through Cohen's kappa, ROC

AUC, and confusion matrix provided insights into the model's accuracy, sensitivity, and

classification performance for multi-class data.

library(kernlab)

ksvm_model <- ksvm(formula, data = final2, type = "C-svc", kernel =

"rbfdot")

predicted_ksvm <- predict(ksvm_model, final2)

tmp_df13=cbind(final2,predicted_ksvm)

glkappa<-cohen.kappa(data.frame(final2$out,predicted_ksvm))

kappa[14]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,predicted_ksvm)

roc[14]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,predicted_ksvm)

max_thres=max(glvv[[8]])

glmars<-confusion.matrix(final2$out,predicted_ksvm,max_thres)

tss[14]<-round(TSS.Stat(glmars),3)

binary_predictions <- ifelse(predicted_ksvm > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[14] <- TP / (TP + FN)

specificity[14] <- TN / (TN + FP)

precision[14] <- TP / (TP + FP)

f1_score[14] <- 2 * (precision * sensitivity) / (precision + sensitivity)

55

mcc[14] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[14] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[14] <- 1 - accuracy[14]

The k-SVM model was applied for binary classification by utilizing kernel functions to

map input features into a higher-dimensional space. This model is effective for handling non-linearly

separable data. Performance was assessed using Cohen's kappa, ROC AUC, and confusion matrix

metrics, highlighting the model's accuracy, sensitivity, and classification capabilities.

if(disease_id!=12)

{

gbm_model=gbm.step(data=final2, gbm.x = 8:grep("PET",names(final2)),

gbm.y = 7, family = "bernoulli", tree.complexity = 1, learning.rate =

0.01,

bag.fraction = 0.65, n.trees = 5,keep.fold.fit=T,tolerance.method="fixed"

, step.size = 5,n.folds = 10)

prediction_gbm<-

predict(gbm_model,n.trees=gbm_model$gbm.call$best.trees,type="response")

glkappa<-cohen.kappa(data.frame(final2$out,prediction_gbm))

kappa[3]<-round(glkappa[[2]],3)

glroc<-roc(final2$out,prediction_gbm)

roc[3]<-round(as.numeric(glroc$auc),3)

glvv<-optim.thresh(final2$out,prediction_gbm)

max_thres=max(glvv[[8]])

glxx<-confusion.matrix(final2$out,prediction_gbm,max_thres)

tss[3]<-round(TSS.Stat(glxx),3)

binary_predictions <- ifelse(prediction_gbm > 0.5, 1, 0)

conf_matrix <- table(final2$out, binary_predictions)

TP <- sum(binary_predictions == 1 & final2$out == 1)

TN <- sum(binary_predictions == 0 & final2$out == 0)

FP <- sum(binary_predictions == 1 & final2$out == 0)

FN <- sum(binary_predictions == 0 & final2$out == 1)

sensitivity[3] <- TP / (TP + FN)

specificity[3] <- TN / (TN + FP)

precision[3] <- TP / (TP + FP)

f1_score[3] <- 2 * (precision * sensitivity) / (precision + sensitivity)

mcc[3] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) *

(TN + FN))

accuracy[3] <- (TP + TN) / (TP + TN + FP + FN)

error_rate[3] <- 1 - accuracy[3]

 }

56

In this section of the code, a Gradient Boosting Machine (GBM) model is trained using the

gbm.step function. The model is built with features from the dataset final2, excluding those with

"PET" in their names, and the response variable is specified. Key parameters for the GBM model,

including tree complexity, learning rate, and the number of trees, are set to control model complexity

and training. Cross-validation with 10 folds is employed to optimize the model's performance, and

predictions are generated using the best number of trees. Evaluation metrics such as Cohen’s Kappa,

ROC AUC, True Skill Statistic (TSS), and other performance measures are then computed to assess

the model’s accuracy and effectiveness in classifying outcomes. This process helps in understanding

the model’s predictive power and its alignment with actual data.

eval<-cbind(kappa, roc, tss, sensitivity, specificity, precision,

f1_score, mcc, accuracy, error_rate)

model_names =

c("glm","rf","gam","mars","xgb","svm","tree_model","lasso_model","fda","g

p_model","nn_model","multinomial","ksvm","gbm")

eval=data.frame(eval)

eval$disease=as.character(unique(ss1[,"disease_name"]))

eval <- cbind(eval, model_names)

final_eval=rbind(final_eval,eval)

fname=paste(dir_name,"/",dir_name,"_evaluation.csv",sep="")

write.csv(final,fname)

prediction=numeric()

for (i in 1:length(prediction_glm)) {

prediction[i]=min(prediction_glm[i],prediction_rf[i],prediction_gbm[i],pr

edicted_gam[i],predicted_mars[i],predicted_xgb[i] >= 0.5)

 if (

 prediction_glm[i] >= 0.5 ||

 prediction_rf[i] >= 0.5 ||

 prediction_gbm[i] >= 0.5 ||

 predicted_gam[i] >= 0.5 ||

 predictedmars[i] >= 0.5 ||

 predicted_xgb[i] >= 0.5 ||

 predicted_svm[i] >= 0.5 ||

 predicted_tree_prob[i] >= 0.5 ||

 predicted_lasso[i] >= 0.5 ||

 predicted_fda[i] >= 0.5 ||

 predicted_gp[i] >= 0.5 ||

 predicted_nn[i] >= 0.5 ||

 predicted_multinom_probs[i] >= 0.5 ||

 predicted_ksvm[i] >= 0.5

) {

 prediction[i] = pmax(

 prediction_glm[i],

 prediction_rf[i],

57

 predictiongbm[i],

 predicted_gam[i],

 predicted_mars[i],

 predicted_xgb[i],

 predicted_svm[i],

 predicted_tree_prob[i],

 predicted_lasso[i],

 predicted_fda[i],

 predicted_gp[i],

 predicted_nn[i],

 predicted_multinom_probs[i],

 predicted_ksvm[i]

)

 } else {

 prediction[i] = pmin(

 prediction_glm[i],

 prediction_rf[i],

 prediction_gbm[i],

 predicted_gam[i],

 predicted_mars[i],

 predicted_xgb[i],

 predicted_svm[i],

 predicted_tree_prob[i],

 predicted_lasso[i],

 predicted_fda[i],

 predicted_gp[i],

 predicted_nn[i],

 predicted_multinom_probs[i],

 predicted_ksvm[i]

)

 }

This code block combines predictions from multiple models. For each prediction, it

evaluates the maximum or minimum prediction value among all models based on whether any

model’s prediction exceeds 0.5. This approach helps in aggregating predictions from various models

to potentially improve overall performance.

summary(prediction)

 vv<-round(prediction,2)

names(final2)

 df1<-cbind(final2,vv)

 df_total<-rbind(df_total, df1)

 gc()

}

58

The above codes combine the original dataset (final2) with the newly computed predictions (vv). The

combined data is appended to df_total, and garbage collection (gc()) is performed to free up memory.

##define risk level by giving predicted values

f=function(m){

 if(m<=0.0 | is.na(m)) i=1

 else if(m>=0.1 && m<=0.19) i=2

 else if(m>=0.20 && m<=0.40) i=3

 else if(m>=0.41 && m<=0.60) i=4

 else if(m>=0.61 && m<=0.80) i=5

 else i=6

}

This function f assigns a risk category based on the predicted value m. The risk levels are defined as

follows:

1: No Risk (NR) if the value is 0.0 or NA.

2: Very Low Risk (VLR) for values between 0.1 and 0.19.

3: Low Risk (LR) for values between 0.20 and 0.40.

4: Medium Risk (MR) for values between 0.41 and 0.60.

5: High Risk (HR) for values between 0.61 and 0.80.

6: Very High Risk (VHR) for values above 0.80.

df_total$cate=factor(mapply(f,df_total$vv),levels=1:6,labels=c("NR","VLR"

,"LR","MR","HR","VHR"))

fwrite(df_total,"outputfile.csv",row.names = F)

The df_total dataset is updated with a new column cate, which represents the risk category for each

prediction using the function f. The risk categories are converted to factors with appropriate labels.

The updated dataset is then saved to a CSV file named "outputfile.csv".

Function to get the highest category

get_highest_category <- function(categories) {

risk_levels <- c("VHR", "HR", "VLR", "MR", "LR", "NR")

max_risk_level <- risk_levels[which.max(risk_levels %in% categories)]

return(max_risk_level)

}

The code starts with a function named get_highest_category. This function is designed to

identify the highest risk category from a list of categories. It operates by first defining a vector

called risk_levels that contains the risk categories ordered from highest to lowest priority: "VHR"

(Very High Risk), "HR" (High Risk), "VLR" (Very Low Risk), "MR" (Moderate Risk), "LR" (Low

Risk), and "NR" (No Risk). The function then checks which of these risk levels are present in the

input vector categories. Using which.max, it finds the index of the highest risk level in the

predefined order and returns this level as the output. This function ensures that the most critical risk

level is selected from the given categories.

59

Group by state, district, and disease, and summarize to get the highest category for each group

df_total <- df_total %>%

group_by(state_id,state_name,district_id,district_name,disease_id,

disease_name,month,out,cattle,buaffalo,goat,sheep,pig) %>%

summarise(cate = get_highest_category(cate),vv=max(vv))

The code groups the data frame df_total by multiple columns and summarizes it by applying the

get_highest_category function to determine the highest risk category (cate) and calculating the

maximum value of the vv column for each group.

write.csv(df_total,"filteredRisk.csv")

This line saves the summarized data frame df_total to a CSV file named filteredRisk.csv for further

use or sharing.

#Results Import and Directory Creation

df_total=fread("outputfile.csv",header=T,check.names=F,data.table = F)

dir.create(path = paste(month_name[month_number,2],current_year))

df_poa=df_total

df_poa$cate=factor(mapply(f,df_poa$vv),levels=1:6,labels=c(0,0,0,0,1,1))

df_poa=df_poa[which(df_poa$month==month_name[month_number,1]),]

df_p=df_poa[,c("disease_name","out","cate")]

df_poa_acc=sqldf("select df_p.disease_name,count(df_p.out) as

Outbreak_count,count(df_p.cate) as Predicted_count,df_p.out,df_p.cate

 from df_p group by

df_p.disease_name,df_p.out,df_p.cate")

df_tp_tn=sqldf("select

df_poa_acc.disease_name,sum(df_poa_acc.Outbreak_count) as Outbreak_count

from df_poa_acc

 where df_poa_acc.out=df_poa_acc.cate

 group by df_poa_acc.disease_name")

df_tot_res=sqldf("select

df_poa_acc.disease_name,sum(df_poa_acc.Outbreak_count) as Total_count

from df_poa_acc

 group by df_poa_acc.disease_name")

df_acc=cbind(data.frame(c(1:nrow(df_tot_res))),data.frame(df_tp_tn[,1]),(

df_tp_tn[,2]/df_tot_res[,2])*100)

df_acc=setNames(df_acc,c("No","Disease","Accuracy"))

dis_acc=paste(paste(month_name[month_number,2]," ",current_year,"/",sep =

""),"Disease Accuracy ",month_name[month_number,2],"

",current_year,".csv",sep="")

write.csv(df_acc,dis_acc,row.names = F)

60

This section begins by importing the data from the outputfile.csv file into a data frame and

creating a directory for the specified month and year. The data is then processed to convert vv values

into binary categories using a custom function. The script filters the data for the current month and

calculates the accuracy of predictions by comparing predicted categories to actual outcomes. The

results are aggregated and saved to a CSV file named with the current month and year.

Risk Count Calculation and Transformation

qry=sprintf("select

df_total.state_name,df_total.disease_name,count(df_total.cate) as

Risk_count from df_total where df_total.cate in('VHR','HR') and

month='%s' group by

df_total.state_name,df_total.disease_name",month_number)

df_qr=sqldf(qry)

df_cast_risk=dcast(df_qr,state_name~disease_name,value.var =

"Risk_count")

df_cast_risk=df_cast_risk[,!(names(df_cast_risk) %in% drops)]

df_colmean <- data.frame("Total_Disease_District_Predicted",

t(colSums(as.data.frame(df_cast_risk[, 2:ncol(df_cast_risk)]), na.rm =

TRUE)))

df_rowmean=data.frame(as.integer(rowSums(df_cast_risk[2:ncol(df_cast_risk

)],na.rm = T)))

df_rowmean=setNames(df_rowmean,"Total_Outbreaks_predicted")

sum_all <- as.integer(sum(colSums(as.data.frame(df_cast_risk[,

2:ncol(df_cast_risk)]), na.rm = TRUE)))

df_cast_risk2=cbind(df_cast_risk,df_rowmean)

df_colmean=cbind(df_colmean,sum_all)

df_colmean= setNames(df_colmean,names(df_cast_risk2))

df_cast_risk2=rbind(df_cast_risk2,df_colmean)

risk_fname=paste(paste(month_name[month_number,2],"

",current_year,"/",sep = ""),"Risk Count StateWise

",month_name[month_number,2]," ",current_year,".csv",sep="")

write.csv(df_cast_risk2,risk_fname,row.names = F,na = "0")

This part of the code calculates the count of high-risk categories ("VHR" and "HR") by

state and disease for the specified month. It reshapes the data to a wide format with states as rows and

diseases as columns, excluding specific diseases from the analysis. The script then computes

summary statistics, including total counts of outbreaks predicted and overall counts for each state and

disease. The results are saved to a CSV file named with the current month and year.

#Outbreak Counts Calculation

df_nd=df_total

df_nd=df_nd[,c("out","month")]

df_count0=sqldf("select count(df_nd.out) as Out_count0,df_nd.month from

df_nd

 where df_nd.out=0

 group by df_nd.month")

61

df_count1=sqldf("select count(df_nd.out) as Out_count1,df_nd.month from

df_nd

 where df_nd.out=1

 group by df_nd.month")

outb_df=merge(df_count0,df_count1,all=T)

fnm=paste(paste(month_name[month_number,2]," ",current_year,"/",sep =

""),"Outbreak Counts ",month_name[month_number,2],"

",current_year,".csv",sep="")

write.csv(outb_df,fnm)

The script begins by selecting the columns "out" and "month" from the df_total data

frame. It then calculates the count of outbreaks where out is 0 and 1, grouped by month, storing

these counts in separate data frames (df_count0 and df_count1). These counts are merged into a

single data frame (outb_df), and the combined data is saved to a CSV file named with the current

month and year, detailing the outbreak counts.

Directory Creation and Library Loading

Forecastingtable_dir=paste(paste(month_name[month_number,2],"

",current_year,"/",sep=""),month_name[month_number,2]," ",current_year,"

T",sep="")

dir.create(path = table_dir)

detach("package:xlsx", unload=TRUE)

library(xlsx)

wb = createWorkbook()

This section starts by creating a directory to store the Excel files. The directory name is

based on the current month and year. It then ensures the xlsx package is unloaded if previously

loaded and reloads it. A new Excel workbook (wb) is initialized for exporting data.

#Data Processing and Export to Excel

st=sort(as.character(unique(df_total[,"state_name"])))

print("Exporting to Excel for each state")

i=1

for(i in 1:36)

{

df_temp=df_total[,c("state_id","state_name","district_id","district_name"

,"disease_id","disease_name","month"),]

df_temp=df_temp[which(df_temp$month==month_name[month_number,1] &

df_temp$state_name==st[i]),]

state_name =unique(as.character(df_temp[,"state_name"]))

df_cast=dcast(df_temp,state_name+district_name~disease_name)

drops=c("Contagious caprine pleuro pneumonia","Rabies")

df_disease_final=df_cast[,!(names(df_cast) %in% drops)]

62

#colnames(df_disease_final)=c(paste("State Name","Districts

of",state_name),"Anthrax","Babesiosis","BQ","BT","ET","Fascioliasis","FMD

","HS","PPR","S&G Pox","SF","Theileriosis","Trypanosomiasis")

colnames(df_disease_final)=c("State Name",paste("Districts

of",state_name),"African Swine

Fever","Anthrax","Babesiosis","BQ","BT","Classical Swine

fever","ET","Fascioliasis","FMD","HS","Lumpy skin disease","PPR","S&G

Pox","Theileriosis","Trypanosomiasis")

title <- paste(" District wise Livestock Disease forewarning for ",

as.character(month_name[month_number, 2]), " ", current_year, " : ",

state_name, sep="")

sheet <- createSheet(wb, state_name)

v_df <- data.frame(title)

Add an extra row to match the number of columns in df_disease_final

v_df <- rbind(v_df, rep(NA, ncol(df_disease_final)))

Set names to match the title

names(v_df) <- title

setColumnWidth(sheet, colIndex = c(1:ncol(df_disease_final)), colWidth =

15)

addDataFrame(v_df, sheet = sheet, startColumn = 7, startRow = 1,

row.names = FALSE)

addDataFrame(df_disease_final, sheet = sheet, startColumn = 1, startRow =

2, row.names = FALSE)

}

This section processes data for each state. It loops through all states, filters the data for the

current month and state, and reshapes it to show disease counts by district. Unwanted diseases are

removed, and columns are renamed for clarity. Each state's data is added to a new sheet in the Excel

workbook with a descriptive title. Column widths are adjusted for readability, and the data is added

to the sheet.

#Saving the Workbook

file_xls= paste(table_dir,"/","State Forecasting

",as.character(month_name[month_number,2]),"

",current_year,".xlsx",sep="")

saveWorkbook(wb, file_xls)

This section constructs the filename for the Excel file based on the current month and year. It then

saves the workbook (wb) to the specified directory with the constructed filename, completing the

export process.

#Directory Creation and Library Loading

library(tmap)

i=1

63

plot_dir=paste(paste(month_name[month_number,2],"

",current_year,"/",sep=""),month_name[month_number,2]," ",current_year,"

N",sep="")

dir.create(path = plot_dir)

This section loads the tmap library required for thematic mapping. It then creates a

directory to store the plot files. The directory name includes the current month and year to organize

the output files.

#Data Preparation and Plotting

disease = c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189)

state.sp=readOGR("shapefile")

while(i<=length(disease)){

kar=k1

cols=as.character(unique(df_total[df_total$disease_id==disease[i],"diseas

e_name"]))

df_disease=df_total[which(df_total$month==month_name[month_number,1] &

df_total$disease_id==disease[i]),]

Available",disease[i],0.00))

df_disease=df_disease[,c("state_id","state_name","district_id","district_

name","disease_id","vv")]

df_disease=setNames(df_disease,c("ST_CEN_CD","state_name","DT_CEN_CD","di

strict_name","disease_id","vv"))

kar@data=join(data.frame(kar@data),data.frame(df_disease),by=c("ST_CEN_CD

","DT_CEN_CD"),type="left",match="first")

#write.csv(kar@data, "merged_data.csv", row.names = FALSE)

colours<-c("darkgrey","#FFFF00","#FFC1C1","#FF7150","#FF8500","darkred")

kar$vv[is.na(kar$vv)]<-0

kar$lb=factor(mapply(f,kar$vv),levels=1:6,labels=c("No Risk / No

Data","Very Low Risk","Low Risk","Medium Risk","High Risk","Very High

Risk"))

cols=gsub("&", "and",cols)

disname= gsub("\\."," ",cols)

if(disname=="Enterotoxaemia")

{

 disname="Enterotoxemia"

 }

cat("Plot for disease:",disname,"\n")

plot_loc=paste(plot_dir,"/",disname,"/",sep="")

dir.create(plot_loc)

file_name=paste(plot_loc,disname,"_resmod.png",sep="")

plot_title= paste(" Risk Prediction of ",disname," for the month of

",month_name[month_number,2]," ",current_year," ",sep="")

#plot_title= paste(disname," risk

prediction(",month_name[month_number,2]," ",current_year,")",sep="")

64

#plot_title= paste(disname)

png(file_name,width = 6, height = 4, units = 'in',res = 200)

#print(spplot(obj = kar,c("lb"),col.regions=colours,main =

list(plot_title,cex=0.8),key.space=list(x=0.2,y=0.9,corner=c(0,1)),scales

=list(draw = TRUE)))

 t_map=tm_shape(kar, unit = "km") +

 tm_polygons(col = "lb", style = "jenks",

 border.alpha = 0, title = "", palette =

c("skyblue","yellow","pink","pink3","orange","#FF0000")) +

 tm_scale_bar(breaks = c(0, 100, 200), size = 1, position=c("left",

"bottom")) +

 tm_compass(type = "arrow", position = c("right","top")) +

 tm_layout(main.title = plot_title,

 main.title.size = 0.55, frame = FALSE)

 t_map1=t_map+tm_shape(state.sp, unit = "km") + tm_borders()

 print(t_map1)

 dev.off()

 i=i+1

}

This section iterates through a list of disease IDs, processes data related to each disease,

and generates maps to visualize risk predictions. For each disease, it prepares a dataset and merges it

with spatial data. It then creates a color-coded map using tmap, specifying risk levels with distinct

colors. Each map is saved as a PNG file in a directory named after the disease, with appropriate titles

and legends.

#Data Table Export

df_tot=df_total

df_tot$Outcome=factor(mapply(f,df_tot$vv),levels=1:6,labels=c("No Risk /

No Data","Very Low Risk","Low Risk","Medium Risk","High Risk","Very High

Risk"))

df_tot$month_letter=month.name[month_number]

load("cs_NDR_table.RData")

cs_ndr_final

df_tot=df_tot[,cs_ndr_final]

write.csv(df_tot,paste0("upload_",month.name[month_number],".csv"),row.na

mes = F)

final_eval12=final_eval

fwrite(final_eval,paste0(paste(month_name[month_number,2],current_year),"

/Eval.csv"))

}

nadres_func(current_year,year_number,month_number)

65

This section prepares a data table for uploading to a website. It converts the numeric risk

values to categorical outcomes and adds a column for the month. It then loads a predefined table

structure (cs_NDR_table.RData), filters the columns accordingly, and writes the updated data to a

CSV file. Additionally, it saves another evaluation file (final_eval) to a CSV format for future use.

Part-2: To obtain district level disease maps

The nadres_func_state_maps function begins by setting the current year, year number, and

month number, and then loads a suite of R libraries for data processing, spatial analysis, and machine

learning. It initializes a mapping of month numbers to names, reads outbreak data from a CSV file,

and categorizes the data into risk levels. The function creates a directory for saving plot outputs, loads

a shapefile of Indian districts, and prepares the data by joining disease and spatial information. For

each disease and state, it generates color-coded risk maps using spplot, assigning risk levels based on

predefined thresholds, and saves these maps as PNG files with appropriate titles and labels. Finally,

the function is executed with the specified parameters to produce the visualizations.

Function Definition and Library Loading

month_number=month number; year_number= from year; current_year=

predicted year;

nadres_func_state_maps=function(current_year,year_number,month_number)

{

 print(current_year)

 print(year_number)

 print(month_number)

 library(RMySQL) # database connection

 library(rgdal) # to read shapefile

 library(RColorBrewer) # color palette

 library(sqldf) # to execute sql queries

 library(data.table) # to read csv files

 library(reshape2) # melt or dcast

 library(imputeMissings) # to fill missing values

 require(sp) # spatial data

 require(spdep) # spatial weights matrix

 require(rms)

 library(xlsx) #to read xlsx files

 library(plyr) #to join dataframes

 library(randomForest) # random forest model

 library(dismo) # gbm

 library(xgboost) #xgboost

 library(mgcv)

 library(earth)

 library(e1071)

66

 library(rpart)

 library(glmnet)

 library(fda)

 library(kernlab)

 library(neuralnet)

 library(nnet)

 library(kernlab)

 library(psych)

 library(pROC) # to calculate roc value

 library(SDMTools) # kappa

 library(BIOMOD)# TSS

The function nadres_func_state_maps begins by defining and printing input parameters for

the current year, year number, and month number. It then loads a series of R libraries used for various

data processing tasks, including database connections, spatial data handling, machine learning, and

data manipulation.

#Month Name and Data Preparation

month_name=data.frame(month=c(1:12),

month_names=c("January","February","March","April","May","June","July","A

ugust","September","October","November","December")

)

import predicted data

 df_total=fread("outputfile.csv",header=T,check.names=F,data.table = F)

 f=function(m){

 if(m<=0.0 | is.na(m)) i=1

 else if(m>=0.0 && m<=0.20) i=2

 else if(m>=0.21 && m<=0.40) i=3

 else if(m>=0.41 && m<=0.60) i=4

 else if(m>=0.61 && m<=0.80) i=5

 else i=6

 }

df_total$cate=factor(mapply(f,df_total$vv),levels=1:6,labels=c("NR","VLR"

,"LR","MR","HR","VHR"))

This part sets up the month_name data frame to map month numbers to names. It then reads a CSV

file containing outbreak data into df_total. A function f is defined to categorize the risk levels into six

groups based on the vv values. These categories are then applied to the df_total data frame.

#Plot Directory Creation and Shapefile Loading

plot_dir=paste(paste(month_name[month_number,2],"

",current_year,"/",sep=""),month_name[month_number,2]," ",current_year,"

N",sep="")

dir.create(path = plot_dir)

67

disease = c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189)

India district shapefile

kar1=readOGR(dsn = "shapefile",verbose = FALSE)

names(kar1)[1]<-"DISTRICT"

names(kar1)[2]<-"ST_NM"

names(kar1)[3]<-"ST_CEN_CD"

names(kar1)[4]<-"DT_CEN_CD"

kar1@data

st=unique(as.character(kar1$ST_NM))

This section creates a directory for storing plots and loads the shapefile of Indian states and

districts. The shapefile is renamed to match the expected column names, and the unique state names

are extracted from the data.

#Disease and State Loop for Plot Generation

i=j=1

i=1

while(i<=length(disease)){

for (j in 1:length(st)) {

kar=kar1[kar1$ST_NM==st[j],]

cols=as.character(unique(df_total[df_total$disease_id==disease[i],"diseas

e_name"]))

df_disease=df_total[which(df_total$month==month_name[month_number,1] &

df_total$disease_id==disease[i]),]

df_disease=df_disease[,c("state_id","state_name","district_id","district_

name","disease_id","vv")]

df_disease=setNames(df_disease,c("ST_CEN_CD","state_name","DT_CEN_CD","di

strict_name","disease_id","vv"))

kar@data=join(data.frame(kar@data),data.frame(df_disease),by=c("ST_CEN_CD

","DT_CEN_CD"),type="left",match="first")

colours<-c("white","#FFFF00","#FFC1C1","#FF7150","#FF8500","darkred")

kar$vv[is.na(kar$vv)]<-0

kar$lb=factor(mapply(f,kar$vv),levels=1:6,labels=c("No Risk / No

Data","Very Low Risk","Low Risk","Medium Risk","High Risk","Very High

Risk"))

cols=gsub("&", "and",cols)

disname= gsub("\\."," ",cols)

 if(disname=="Enterotoxaemia")

 {

 disname="Enterotoxaemia"

 }

 cat("Plot for disease:",disname,st[j],"\n")

 plot_loc=paste(plot_dir,"/",sep="")

68

file_name=paste(plot_loc,disname,"_",st[j],"_",month_name[month_number,2]

,".png",sep="")

plot_title= paste(st[j]," Risk Prediction of ",disname," for the month of

",month_name[month_number,2]," ",current_year," ",sep="")

png(file_name,width = 6, height = 4, units = 'in',res = 200)

print(spplot(obj = kar,c("lb"),col.regions=colours,main =

list(plot_title,cex=0.8),key.space=list(x=0.2,y=0.9,corner=c(0,1))

 ,sp.layout = list("sp.text",

coordinates(kar),kar$district_name,cex=0.5),scales=list(draw = TRUE)))

dev.off()

 }

 i=i+1}}

The function iterates through each disease and each state. For each combination, it filters and merges

disease data with spatial data, assigns risk levels, and generates a plot using spplot. Each plot is saved

as a PNG file in the previously created directory. The color scheme is defined, and the risk levels are

labelled.

nadres_func_state_maps(current_year,year_number,month_number)

Finally, the function nadres_func_state_maps is called with the specified parameters to execute the

plotting process.

69

Step-4: Watermarking for maps created at the district and state levels

After generating all district- and state-level maps, it is crucial to incorporate a watermark

to ensure the authenticity and ownership of the visualizations. Specifically, the inclusion of the

NIVEDI logo on each map before publication on the NADRES website is essential. This

watermarking process not only helps in branding and protecting intellectual property but also

maintains the integrity of the maps by clearly identifying the source. By embedding the logo in the

maps, the final output is safeguarded against unauthorized use, and the association with the National

Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) is prominently displayed,

reinforcing credibility and transparency in the presented data.

I. National level maps (visual, state-by-state)

library(magick)

im=list.files(path="maps/",pattern = ".png",full.names = T,recursive = F)

img1=image_read('logo.png')

i=1

for (i in 1:length(im)) {

img=image_read(im[i])

img2=image_composite(img, image_scale(img1, "x120"), offset = "+470+300")

image_write(image = img2,paste0("mapsnew/",i,".png"))

}

The provided R code snippet utilizes the magick library to watermark a series of map

images with a logo. It begins by listing all PNG files in the maps/ directory and reading a logo image

(logo.png). For each map image, the code reads the image, overlays the logo at a specific position

with a scaled size, and then saves the watermarked image to a new directory (mapsnew/). This process

ensures that each map is branded with the logo, enhancing ownership and preventing unauthorized

use. The watermark is positioned at a defined offset to avoid obscuring important map details.

II. Watermarking for District wise maps

The script leverages the magick package in R to systematically add a watermark, such as a

logo, to a series of district-wise map images for 15 different diseases across various states. It begins

by defining the file paths for both the map images and the watermark. For each map image, the script

reads the image and the watermark using the image_read() function. It then resizes the watermark to

a specified width using image_resize() to maintain consistency across all images. The watermark is

overlaid onto each map image with the image_composite() function, where the position of the

watermark is adjusted using specified offsets to ensure optimal placement and visibility. This step is

repeated for each disease and state, ensuring that the watermark is appropriately positioned and does

not obstruct important map details. Finally, the watermarked images are saved to a designated output

directory with filenames reflecting their respective states and diseases. This automated approach

allows for efficient processing and branding of a large number of map images, ensuring uniformity

and professionalism across the dataset.

70

install.packages("magick")

library(magick)

img1=image_read('LOGO')

im=list.files(path="State maps/",pattern =

glob2rx("*_ANDAMAN*.png"),full.names = T,recursive = F)

im

i=1

for (i in 1:length(im)) {

for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+400+500")

 image_write(image = img2,paste0("1/",basename(im[i])))

}

img1=image_read('LOGO.png')

im=list.files(path="State maps/",pattern =

glob2rx("*_ANDHRA*.png"),full.names = T,recursive = F)

i=1

img=image_read(im[i])

#img2=image_composite(img, image_scale(img1, "x100"), offset =

"+400+500")

#img2

#img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+700")

#img2

img2=image_composite(img, image_scale(img1, "x100"), offset = "+400+500")

img2

for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+400+500")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

}

im=list.files(path="State maps/",pattern =

glob2rx("*_ARUNACHAL*.png"),full.names = T,recursive = F)

i=1

img=image_read(im[i])

img2=image_composite(img, image_scale(img1, "x100"), offset = "+600+500")

img2

img2=image_composite(img, image_scale(img1, "x100"), offset =

"+800+500")

img2

71

img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+500")

img2

for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+500")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

}

img1=image_read('LOGO.png')

im=list.files(path="State maps/",pattern =

glob2rx("*_ASSAM*.png"),full.names = T,recursive = F)

i=1

img=image_read(im[i])

img2=image_composite(img, image_scale(img1, "x100"), offset = "+450+500")

img2

for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+500")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

}

img1=image_read('LOGO.png')

im=list.files(path="State maps/",pattern =

glob2rx("*_BIHAR*.png"),full.names = T,recursive = F)

i=1

img=image_read(im[i])

img2=image_composite(img, image_scale(img1, "x100"), offset = "+650+500")

img2

{for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+500")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

}

 im=list.files(path="State maps/",pattern =

glob2rx("*_CHANDIGARH*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

72

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+500")

 # img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+800+500")

 # img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+900+500")

 # img2

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_CHHATTISGARH*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+750+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_DADRA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

73

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_DAMAN*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+350")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+500")

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+500")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+350")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_GOA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+500")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

74

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_GUJARAT*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_HARYANA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+400+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+400+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_HIMACHAL*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

75

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_JAMMU*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_JHARKHAND*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+700+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+700+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_KAR*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

76

 im=list.files(path="State maps/",pattern =

glob2rx("*_KER*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+800+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_LAKSHAD*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_MADHYA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

77

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_MAHARA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+350+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+350+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_MANIPUR*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+575+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+575+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_MEGHALA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+550")

 # img2

78

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+400")

 # img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+500")

 # img2

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+750+480")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+750+480")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_MIZORA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+480")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+550")

 # img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+800+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_NAGALAND*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 for (i in 1:length(im)) {

79

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+450+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_DEL*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_ODISHA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+450")

 img2

 # img2=image_composite(img, image_scale(img1, "x100"), offset =

"+850+550")

 # img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+450")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_PUDUC*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

80

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_PUNJAB*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_RAJAS*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_SIKKIM*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

81

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_TAMIL*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_TELANGANA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+500+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_TRIPURA*.png"),full.names = T,recursive = F)

 i=1

82

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+500+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+550+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_UTTAR*.png"),full.names = T,recursive = F)

 im=list.files(path="State maps/",pattern = glob2rx("*_UTTAR

PRA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+650+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_UTTARA*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+625+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+625+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_WEST*.png"),full.names = T,recursive = F)

83

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+550")

 img2

 image_write(image = img2,paste0("1/",basename(im[i])))

 }

 im=list.files(path="State maps/",pattern =

glob2rx("*_LADAKH*.png"),full.names = T,recursive = F)

 i=1

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+500")

 img2

 for (i in 1:length(im)) {

 img=image_read(im[i])

 img2=image_composite(img, image_scale(img1, "x100"), offset =

"+600+500")

 img2

 image_write(image = img2,paste0("1/",basename(im[i]))) }}

84

Step-5: Data file preparation for warnings and alerts uploading to the website

To obtain warnings and alerts information: Based on the risk variable for a specific disease,

warnings will be issued to districts identified as Very High and High Risk, indicating a high likelihood

of disease outbreak. Conversely, alerts will be sent to districts predicted to be at Moderate Risk,

signifying a lower but still notable risk of disease transmission. This approach ensures targeted

responses tailored to the varying levels of risk, allowing for more effective allocation of resources

and implementation of preventive measures.

#Environment Setup and Data Reading

Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk1.8.0_201\\')

library(qdap)

vp=beg2char(Sys.Date(),"-",2) #c("2018-11")

month_number= as.numeric(substr(vp,6,7))+2 #"11"

month_number=ifelse(month_number>12,month_number-12,month_number)

mch=month.name[month_number]

year=beg2char(vp,"-")

This section sets up the Java environment and loads the qdap library. It calculates the month and

year for the report, adjusting for month transitions if necessary.

#Reading Data

#d=read.csv(paste0("../NADRES_PCA_Delta_March_2024.csv"))

d=read.csv(paste0("../","upload_",mch,".csv"))

The script reads a CSV file corresponding to the current month, which contains the risk data.

#Filtering Data for Risk Levels

d1=d[d$Outcome=="High

Risk",c("month_letter","disease_name","district_name")]

d2=d[d$Outcome=="Very High

Risk",c("month_letter","disease_name","district_name")]

d3=rbind(d1,d2)

d3=d3[!duplicated(d3),]

d4=d[d$Outcome=="Medium

Risk",c("month_letter","disease_name","district_name")]

This segment filters the data for high, very high, and medium risk levels, removing duplicates to

ensure unique entries.

#Generating Alerts for Medium Risk

dis=as.character(unique(d3$disease_name))

i=1

tmp1=d4

d4_h=c()

85

for (i in 1:length(dis)) {

 d4=tmp1[tmp1$disease_name==dis[i],]

 v=paste0("<tr class='row100 body'>

 <td class='cell100 column1 alert'>Alert</td>

 <td class='cell100 column2'>",mch,"</td>",

 "<td class='cell100

column3'>",paste0(d4$district_name,collapse = ","),"</td>",

 "<td class='cell100 column4'>",dis[i],"</td>")

 d4_h=append(d4_h,v)

}

write.table(d4_h,file = "NDR_SOL_MR.CSV",row.names = F,eol =

"</tr>",sep="\n")

tmp1=d3

d4_h=c()

for (i in 1:length(dis)) {

 d4=tmp1[tmp1$disease_name==dis[i],]

 v=paste0("<tr class='row100 body'>

 <td class='cell100 column1 warning'>Warning</td>

 <td class='cell100 column2'>",mch,"</td>",

 "<td class='cell100

column3'>",paste0(d4$district_name,collapse = ","),"</td>",

 "<td class='cell100 column4'>",dis[i],"</td>")

 d4_h=append(d4_h,v)

}

write.table(d4_h,file = "NDR_SOL_hr_vhr.CSV",row.names = F,eol =

"</tr>",sep="\n")

The script generates HTML-like alert strings for districts at medium risk, formatting them into a

CSV file NDR_SOL_MR.CSV.

#Generating Warnings for High and Very High Risk

ds=d[d$Outcome==c("Medium Risk","High Risk","Very High

Risk"),c("month_letter","disease_name","state_name")]

ds=ds[!duplicated(ds),]

dis=as.character(unique(d$disease_name))

i=1

tmp1=ds

d4_h=c()

for (i in 1:length(dis)) {

 d4=tmp1[tmp1$disease_name==dis[i],]

 v=paste0(d4$state_name,collapse = ",")

 d4_h=append(d4_h,v)

}

d4_h=data.frame(dis,d4_h)

86

write.table(d4_h,file = "1 state_NDR_SOL_hr_vhr.CSV",row.names = F)

This part of the script generates a state-wise report of predicted diseases for various risk

levels and saves it to 1 state_NDR_SOL_hr_vhr.CSV, providing a comprehensive overview of disease

predictions across states.

87

Step- 6: To assess geographic correlation, used the Moran-I index

The Moran-I index is used to analyze spatial autocorrelation, which assesses the degree of

similarity in values between neighbouring locations within a geographic dataset. By conducting

Moran-I index analysis, we can identify spatial patterns, clusters, or spatial outliers in the data,

helping us understand if there are significant spatial trends or dependencies present. This analysis

aids in various fields such as urban planning, epidemiology, and environmental studies by informing

decision-making processes related to resource allocation, policy formulation, and spatial targeting of

interventions.

The goal of the script is to analyse the spatial distribution of disease outbreaks across

various districts in India by calculating Moran's I statistic. Moran's I measures spatial autocorrelation,

indicating whether high or low values (e.g., disease outbreaks) are clustered together in space. The

analysis is carried out for a specific month and year range, and the results are saved in a CSV file.

#Data Preparation and Filtering

month_number = month number #Predicted Month

year_number = from year

current_year = predicted year

function Moran I --------

moran_ndr = function(month_number, year_number, current_year)

library(data.table)

library(plyr)

library(rgdal)

library(spdep) # for neighbouring list, weighted matrix

library(plyr)

library(reshape2)

disease = c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189)

df_dat = fread("dist_out_nadres_2024-03-04 11_20_54.csv",

 header = T,

 check.names = F,

 data.table = F

)

dis = df_dat[df_dat$disease_id %in% disease, c("disease_id",

"disease_name")]

dis = dis[!duplicated(dis),]

filter data for month nad ten years data

d = df_dat[df_dat$month == month_number &

 df_dat$year >= year_number &

 df_dat$year <= current_year &

 df_dat$number_of_outbreaks != 0,]

88

d = na.omit(d)

d$state_name = toupper(d$state_name)

d = d[!d$state_name == "ANDAMAN & NICOBAR ISLANDS",]

d[d$state_name == "ARUNANCHAL PRADESH", "state_name"] = "ARUNACHAL

PRADESH"

This section prepares the data by setting parameters for the month and year of interest,

loading necessary libraries, and reading the data from a CSV file. It then filters the data for relevant

diseases and time periods, cleans it by removing NA values and standardizing state names.

#Shapefile Processing and Spatial Analysis

ka1 = readOGR("~/1shp/2011_Dist.shp")

df = NULL

j = 1

for (j in 1:length(disease)) {

d2 = d[d$disease_id == disease[j],]

st = as.character(unique(d2$state_name))

i = 1

s = c() # to store state name

it = c() # to store moran I

for (i in 1:length(st)) {

ka = ka1[ka1$ST_NM == st[i],]

as.character(unique(ka1$ST_NM))

d1 = d2[d2$state_name == st[i],]

colnames(d1)[c(1, 4)] = c("ST_NM", "DISTRICT")

if (length(unique(d1$district_id)) > 2) {

 ka@data = join(data.frame(ka@data),

 d1,

 match = "first",

 type = "left")

 #View(ka@data)

 # generate neighbouring list for district polygons

 wgt = poly2nb(ka, row.names(ka))

 # check for non neighbouring polygons

 nghb.list = unlist(lapply(wgt, sum))

 ind_non_nb = which(nghb.list == 0)

 # if non neighbouring polygons exist, remove it

 if (length(ind_non_nb) >= 1 & nrow(ka)!=length(ind_non_nb))

 {

 ka = ka[-ind_non_nb,]

 # neighbour index list

 wgt = poly2nb(ka, row.names(ka))

 # neighbour matrix as 0 or 1

 wm <- nb2mat(wgt, style = 'B', zero.policy = T)

 # weighted matrix list

89

 ww <- nb2listw(wgt, style = 'B', zero.policy = T)

 # set NA to 0

 ka$number_of_attacks[is.na(ka$number_of_attacks)] = 0

 # convert to 1

 ka[ka$number_of_attacks > 0, "number_of_attacks"] = 1

 # calculate moran I

 v = moran(

 ka$number_of_attacks,

 ww,

 n = length(ww$neighbours),

 S0 = Szero(ww)

)

 # if moran I is NULL

 if (is.nan(v$I)) {

 it = append(it, 0)

 } else{

 it = append(it, v$I)

 }

 # add state, moran I

 s = append(s, st[i])

 } else {

 wm <- nb2mat(wgt, style = 'B', zero.policy = T)

 wgt = poly2nb(ka, row.names(ka))

 wm <- nb2mat(wgt, style = 'B', zero.policy = T)

 ww <- nb2listw(wgt, style = 'B', zero.policy = T)

 ka$number_of_attacks[is.na(ka$number_of_attacks)] = 0

 ka[ka$number_of_attacks > 0, "number_of_attacks"] = 1

 # calculate moran I

 v = moran(

 ka$number_of_attacks,

 ww,

 n = length(ww$neighbours),

 S0 = Szero(ww)

)

 # if moran I is NULL

 if (is.nan(v$I)) {

 it = append(it, 0)

 } else{

 it = append(it, v$I)

 }

 # add state, moran I

 s = append(s, st[i])

 } } }

 # when df is empty

 if (j == 1) {

90

 df = cbind(df, s, it, disease[j])

 } else{

 # when df is not empty, append rows

 df = rbind(df, cbind(s, it, disease[j]))

 } }

In this section, a shapefile (ka1) of Indian districts is loaded. An empty data frame df is

created to store Moran’s I values. The code loops through each disease, filters the data accordingly,

and processes it by state. For each state, the shapefile data is merged with the disease data, and

neighboring districts are identified using poly2nb. Moran’s I is computed for states with more than

two districts, and results are stored in df. Non-neighboring districts are removed if necessary, and

Moran’s I values are calculated and appended to df.

#Data Formatting and Output

temp = df

colnames(df) = c("State", "Moran_I", "disease_id")

join disease and moran I data

df1 = join(data.frame(df), dis, match = "first", type = "left")

remove disease id column

df1 = df1[, -1]

rename columns

colnames(df1) = c("state", "moran_I", "disease_name")

cast disease as columns, moran I value in cells

df_cast = dcast(df1,

 formula = as.formula("state~disease_name"),

 value.var = "moran_I")

fwrite(df_cast, paste0("Moran I_", month.name[month_number], ".csv"))

moran_ndr(month_number, year_number, current_year)

The final part of the script formats the computed Moran's I values into a data frame,

reshaping it so that each state is a row and each disease is a column. The results are saved to a CSV

file for easy access and further analysis. This output helps visualize and interpret the spatial

distribution of disease outbreaks across different states.

91

Step- 7: Forecasting weather parameters at state level

The R code conducts a detailed time series analysis of weather parameters using ARIMA

models to forecast future values based on historical data. It involves constructing various ARIMA

model configurations to identify the most suitable model for each parameter, based on the Akaike

Information Criterion (AIC). By converting weather data into time series objects and applying these

models, the code generates forecasts for the next five years, transforming predictions back to their

original scale if needed. The results are saved in CSV files and visualized through plots that compare

historical data with forecasts. Additionally, the root mean squared error (RMSE) is calculated to

assess forecast accuracy, providing a robust framework for understanding long-term trends and

supporting decision-making processes in fields such as epidemiology.

#Loading Required Libraries

library (tseries)

library(forecast)

These libraries provide essential functions for time series analysis (tseries), forecasting with

ARIMA models (forecast), and numerical analysis (pracma).

#Defining ARIMA Model Parameters

p=rep(c(1:3),each=3)

d=rep(c(0),length=9)

q=rep(c(1:3),length=3)

p

pdq_df=data.frame(p,d,q)

p=rep(c(1:3),each=3)

d=rep(c(1),length=9)

q=rep(c(1:3),length=3)

pdq_df1=rbind(pdq_df,cbind(p,d,q))

Here, different combinations of ARIMA parameters (p, d, q) are generated for both non-

seasonal and seasonal components. pdq_df and pdq_df1 hold these parameter sets, enabling

exploration of various ARIMA models.

#Reading and Preparing Data

v1= read.csv(file.choose(),header = TRUE,sep="\t")

v1=read.table("clipboard",header = TRUE,sep="\t")

cs=colnames(v1)

cs=cs[-1]

This code reads weather data from a file or clipboard and extracts column names, excluding the first

column, which is assumed to be a time index.

#Model Selection and Forecasting

m=1

92

for (m in 1:length(cs))

{

 v2=v1[,cs[m]]

 if(cs[m]=="Rainfall")

 {

 v2=v2*86400

 }

 ts_sh=ts(data=v2,start = 2001,frequency = 12)

 aic_val=c()

 for (i in 1:nrow(pdq_df1))

 {

 v=pdq_df1[i,]

 m1=try(arima(log(ts_sh), order = c(as.numeric(v)),

seasonal=list(order=c(as.numeric(v)),period=12)),silent = T)

 if(class(m1)=="Arima")

 {

 aic_val=append(aic_val,m1$aic)

 } else aic_val=append(aic_val,NA)

 }

 ind_order=which(min(aic_val,na.rm = T)==aic_val)

 best=pdq_df1[ind_order,]

 m1.b=arima(log(ts_sh), order = c(as.numeric(best)),

seasonal=list(order=c(as.numeric(best)),period=12))

 p1.b=predict(m1.b,n.ahead = 5*12)

 p2.b = 2.718^p1.b$pred

 p2.df=data.frame(p2.b)

 yr=rep(2021:2025,each=12)

 mn=rep(1:12,length=60)

 year_mn_pred=data.frame(year=yr,month=mn,p2.b)

 colnames(year_mn_pred)[3]=cs[m]

 write.csv(year_mn_pred, file = paste0(cs[m],".csv"),row.names = F)

 png(filename =paste0(cs[m],".png"),width = 6,height = 4,units =

"in",res = 200)

 ts.plot(ts_sh,p2.b,lty=c(1,3),main=paste0("Forecasting of ",cs[m],"

till 2025"),col=c("#008080","#000080"),lwd=3)

 dev.off()

}

93

This section iterates over each weather parameter, adjusts units if necessary, and creates a

time series object. It fits ARIMA models using the predefined parameters, selects the model with the

lowest AIC, and uses it to forecast the next 5 years. The forecasts are transformed back from the log

scale to the original scale, saved to a CSV file, and plotted for visualization.

m1

ind_order

best

p2.b

library (pracma)

t=rmserr(p2.b, p1.b$pred,summary=T)

The root mean squared error (RMSE) is calculated to evaluate the accuracy of the forecasted values

compared to the predicted values, providing a measure of forecast reliability.

 The provided R code systematically applies ARIMA models to historical weather data to

identify the best forecasting model based on AIC. It generates forecasts for the next five years, saves

the results, and visualizes them with plots. The accuracy of these forecasts is assessed using RMSE,

ensuring reliable and actionable insights into weather trends.

94

Step- 8: Finding Significant Weather Parameters for livestock Diseases

The provided R code performs a statistical analysis of weather-related variables across

different diseases using Linear Discriminant Analysis (LDA) and Analysis of Variance (ANOVA).

The objective is to identify which weather parameters significantly affect the classification of

different diseases. This process involves standardizing the data, fitting LDA models to classify

diseases based on weather parameters, and conducting ANOVA to assess the significance of these

parameters. The results are summarized and saved for further interpretation.

#Loading Libraries and Reading Data

library(MASS)

library(data.table)

df=read.csv("inputfile.csv")

The code loads the MASS library for LDA functions and the data.table library for efficient data

manipulation. It then reads the dataset from a CSV file, which includes weather and disease data.

#Handling Missing Values in dataframe

df[is.na(df)] <- 0

This line replaces all missing values in the dataframe with zero, ensuring that subsequent analyses

are not affected by missing data.

#Preparing for Analysis

Get unique disease values

diseases <- unique(df$disease_name)

Create a list to store results for each disease

results_list <- list()

Loop through each disease

for (disease in diseases) {

 subset_df <- subset(df, disease_name == disease)

 variables_to_scale <- subset_df[, c("PET", "Vapour_pressure")]

 scaled_variables <- scale(variables_to_scale)

 # Replace the original variables with the scaled ones in the dataframe

 subset_df[, c("PET", "Vapour_pressure")] <- scaled_variables

 cols <- names(subset_df)

 formula <- as.formula(paste("out ~", paste(cols[-1], collapse = " +

")))

 # LDA function call

 lda_result <- lda(formula, data = subset_df)

 # ANOVA function call

95

 anova_result <- aov(formula, data = subset_df)

 anova_summary <- data.frame(anova(anova_result))

Save the results for each disease

 results_list[[disease]] <- list(lda = lda_result, anova =

anova_summary)

}

For each disease, the code subsets the data and standardizes the selected weather variables

("PET" and "Vapour_pressure") to ensure comparability. It constructs a formula for LDA and ANOVA

based on all variables in the dataset, then performs LDA and ANOVA. The results are stored in a list

for each disease, including LDA outputs and ANOVA summaries.

Create a data.table to store the summary

summary_dt <- data.table(Disease = character(),

 Parameter = character(),

 P_Value = numeric())

Loop through each disease and parameter to extract relevant information

for (disease in diseases) {

anova_result <- results_list[[disease]]$anova

Extract parameters with p-values < 0.05

significant_parameters <- anova_result[anova_result$"Pr..F." < 0.05, ,

drop = FALSE]

if (!is.null(significant_parameters)) {

summary_dt <- rbindlist(l=list(summary_dt,

 data.table(Disease = rep(disease,

nrow(significant_parameters)),

Parameter = rownames(significant_parameters),

P_Value = significant_parameters$"Pr..F.")),

use.names = TRUE, fill = TRUE)

 }

}

The code creates an empty data.table to store significant ANOVA results. It iterates through

each disease’s ANOVA results to extract parameters with p-values less than 0.05, indicating statistical

significance. These significant results are aggregated into a summary table.

Save the summary data.table to a CSV file

fwrite(summary_dt, "ANOVA_Summary.csv", row.names = FALSE)

Finally, the summary table containing significant ANOVA results is saved to a CSV file for further

review and analysis.

96

97

98

11. DATA COMMUNICATION

I. Email

Effective data communication is crucial for disseminating important information to stakeholders.

Each month, we send NADRES_V2 Bulletin and methodology reports between 650 to 700 emails to

principals and co-principal investigators of NADEN Centres, Central and State Veterinary

Departments, and other relevant stakeholders. These emails are designed to provide timely updates,

reports, and critical insights regarding livestock health and disease management. By maintaining

regular communication, we ensure that all parties are informed and can take appropriate actions based

on the latest data and forecasts.

II. NADRES Website

The NADRES website serves as a central hub for distributing crucial information related to livestock

disease forewarning. Every month, we upload the Livestock Disease Forewarning Bulletin and

Livestock Disease Forewarning Methodology to ensure that users have access to the most current and

accurate data. The website has recently achieved a significant milestone, attracting over 2 million

visitors, reflecting its importance and the trust placed in it by the veterinary community and other

stakeholders. This online platform enhances accessibility and ensures that valuable information is

readily available to those who need it.

III. Mobile Applications

Leveraging mobile technology, we have developed applications to disseminate livestock disease

information more effectively. These mobile applications provide real-time updates, alerts, and

comprehensive data on livestock health and disease forecasts. By making this information accessible

via smartphones, we empower stakeholders, including farmers and veterinary professionals, to make

informed decisions promptly. This mobile-centric approach ensures wider reach and engagement,

particularly in remote and rural areas were access to traditional

Communication channels might be limited.LDF - Mobile App

99

https://play.google.com/store/apps/details?id=info.androidhive.ldf&hl=en&gl=US&pli=1

Large Language Models

▪ Farmers can simply voice their queries about diseases, vaccination schedules, or other concerns,

and receive accurate and contextually relevant responses instantly

▪ LLMs empower farmers to proactively manage disease prevention and control by offering timely

guidance on identification, prevention strategies, and vaccination protocols

Fig. 11.1. Scientific Integration of Mobile Applications in Livestock Disease Risk Communication

IV. Disease Risk Communication (in collaboration with FRUITS, NIC, and the Government of

Karnataka)

In addition to NADRES V2 (The National Animal Disease Referral Expert System), ICAR-NIVEDI

collaborated with NIC, Govt. of Karnataka, Karnataka State for sending the SMS alerts directly to

the farmers who have registered in FRUITS (Farmers Registration and Unified Beneficiary

Information System). The information alerts on risk prediction of livestock diseases were sent through

SMS to farmers is presented in Table 11.A. During April 2023 to March 2024, a total of 1,22,31,000

SMS alerts were sent to farmers.

https://play.google.com/store/apps/details?id=info.androidhive.ldf&hl=en&gl=US&pli=1

100

Fig. 11.2. FRUITS Sending Website and Operational Steps

▪ Farmers in Karnataka were informed of disease risks via SMS notifications.

▪ A total of 1,22,31,000 SMS notifications were sent between April 2023 to March 2024.

▪ The notifications covered various animal diseases such as Anthrax, Babesiosis, Black

Quarter, Fasciolosis, FMD, Theileriosis, and Trypanosomiasis.

▪ The SMS notifications were facilitated through the IT, FRUITS a web program of NIC,

Government of Karnataka.

Table 11.A. Farmer Registration and Unified beneficiary Information System (FRUITS)

101

V. DLT provision

Distributed Ledger Technology (DLT) has been implemented to optimize communication processes,

enhancing the efficiency of disseminating information and delivering updates related to livestock

disease risk management.

VI. Post-prediction validation

Post-prediction validation is a crucial process in evaluating the accuracy and reliability of predictive

models. This involves comparing the model's forecasts against actual outcomes using various sources

such as scientific publications and ProMED reports. By systematically validating predictions,

researchers can identify discrepancies, refine models, and enhance their predictive performance for

future applications.

I. PPR reported in the month of January 2024 in Dehradun district of Uttarakhand

January 2024 ProMED report on Peste des Petits Ruminants (PPR) livestock disease aligns with our

November 2023 report of predicting high-risk for January 2024, enhancing forecast accuracy and

underscoring the imperative for proactive disease prevention measures.

102

II. Hemorrhagic Septicemia Reported in Ludhiana District, Punjab, in April 2024

The April 2024 ProMED report on Hemorrhagic Septicemia (HS) in livestock in Ludhiana District,

Punjab, corroborates our February 2024 forecast predicting a high risk of HS for April 2024. This

alignment between observed disease incidence and our predictive model enhances the accuracy of

our forecasts and underscores the critical need for proactive disease prevention measures.

III. PPR reported in the month of April 2024 in Kollam district of Kerala

The April 2024 ProMED report on Peste des Petits Ruminants (PPR) in Kollam District, which is

adjacent to the previously identified high-risk area, corroborates our January 2024 forecast predicting

a high risk of PPR for March 2024. This alignment of observed data with our predictions enhances

forecast accuracy and underscores the necessity for proactive disease prevention measures. The

congruence between reported incidence and forecasted risk highlights the robustness of our predictive

model and reinforces the need for timely, targeted interventions to mitigate disease spread.

103

IV. Foot and Mouth Disease Reported in March 2024 in Pilibhit District, Uttar Pradesh,

Adjacent to Budaun District

The March 2024 ProMED report on Foot and Mouth Disease (FMD) in Pilibhit District a neighboring

district to Badaun District corroborates our January 2024 high-risk prediction for March 2024. This

alignment of risk forecasts underscores the accuracy of our predictive models and highlights the

critical need for proactive disease prevention measures. The concurrence between the observed

disease incidence and our forecasted risk emphasizes the efficacy of our forecasting methodology and

reinforces the importance of timely interventions to mitigate disease spread.

104

APPENDIX

Abbreviations

NADRE : National Animal Disease Referral Expert System

R : R environment for statistical computing

ASF : African Swine Fever

BQ : Black Quarter

BT : Blue Tongue

CSF : Classical Swine Fever

ET : Enterotoxaemia

FS : Fasciolosis

FMD : Foot and Mouth disease

HS : Haemorrhagic Septicaemia

PPR : Peste des Petits Ruminants

SGP : Sheep and Goat pox

hPa : Hectopascals

NR : No risk/ No data available

VLR : Very low risk

LR : Low risk

MR : Moderate risk

HR : High risk

VHR : Very high risk

105

Reference:

1. Suresh, K. P., Dhemadri, D., Kurli, R., Dheeraj, R., & Roy, P. (2019). Application of Artificial

Intelligence for livestock disease prediction. Indian Farming, 69(3).

2. Suresh, K. P., Sengupta, P. P., Jacob, S. S., Sathyanarayana, M. K. G., Patil, S. S., Swarnkar,

C. P., & Singh, D. (2022). Exploration of machine learning models to predict the environmental

and remote sensing risk factors of haemonchosis in sheep flocks of Rajasthan, India. Acta

Tropica, 233, 106542.

3. Suresh, K. P., Bylaiah, S., Patil, S., Kumar, M., Indrabalan, U. B., Panduranga, B. A., &

Amachawadi, R. G. (2022). A new methodology to comprehend the effect of El Niño and La

Niña oscillation in early warning of anthrax epidemic among livestock. Zoonotic

Diseases, 2(4), 267-290.

4. Jayashree, A., Suresh, K. P., Dikshitha, J., Gulati , B. R., Balamurugan , V., Jacob , S. S., Patil , S.

S., & Hemadri , D. (2024). Exploring the Impact of Climate Variables on Livestock Anthrax

Outbreaks: A Machine Learning Approach. International Journal of Environment and Climate

Change, 14(3), 494–507. https://doi.org/10.9734/ijecc/2024/v14i34059.

5. Sagar N, Suresh KP, Ramanji RS, Bharath M, Naveesh YB, Ravichandra and Archana CA.

Revolutionizing potato crop management: Deep learning-driven potato disease detection with

convolutional neural networks. International Journal of Advanced Biochemistry Research 2024;

8(3): 644-653.

6. Jayashree, A., Suresh, K. P., & Raaga, R. (2024). Advancing Coffee Leaf Rust Disease

Management: A Deep Learning Approach for Accurate Detection and Classification Using

Convolutional Neural Networks. Journal of Experimental Agriculture International, 46(2), 108–

118. https://doi.org/10.9734/jeai/2024/v46i22313.

7. KRISHNAMOORTHY, P. ., DHARSHAN, H. V. ., CHANDRASEKHAR, T. M. ., &

SURESH, K. P. (2023). Development of Cattle Disease Diagnosis Expert System (CaDDES):

A web application for the diagnosis of cattle diseases. The Indian Journal of Animal Sciences,

93(12), 1180–1186. https://doi.org/10.56093/ijans.v93i12.135480.

8. Suresh, K.P., Barman, N.N., Bari, T. et al. Application of machine learning models for risk

estimation and risk prediction of classical swine fever in Assam, India. VirusDis. (2023).

https://doi.org/10.1007/s13337-023-00847-6.

9. Suresh KP, Sagar N, Jayashree A, Naveesh Y B, Hemadri D, S S Patil, Ramesh Doddamani

and Sushma R, EPIDEMIOLOGICAL INSIGHTS INTO THE ANTHRAX OUTBREAK IN

MUDDABALLI VILLAGE, KARNATAKA: A CASE REPORT, European Journal of

Biomedical and Pharmaceutical sciences, 2023, Volume 10, Issue 11, 112-115.

https://doi.org/10.9734/ijecc/2024/v14i34059
https://doi.org/10.9734/jeai/2024/v46i22313
https://doi.org/10.56093/ijans.v93i12.135480

106

