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Disclaimer 
The forewarnings are based on the retrospective disease data 

available in the NADRES database. Hence, for those states 

wherein data is limited/less, the forewarning may not be realistic. 

Further the forewarning will not take into consideration the control 

measures that are in situ. 
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1. ABOUT THE DOCUMENTATION… 

 
         This document provides a comprehensive, systematic approach to livestock disease prediction 

and management in India, focusing on the application of R programming. It presents advanced 

forecasting techniques, machine learning models, and data analytics to predict risks associated with 15 

economically significant livestock diseases. Through detailed methodologies and R programming codes, 

it offers a robust framework for disease prevention and control. Structured across 105 pages, the 

documentation ensures a logical progression from data collection to forecasting results, emphasizing 

scientific rigor and practical application. 

 

                Forecasting in livestock health involves quantitative predictions based on historical data, 

enabling decision-makers to anticipate disease outbreaks and implement timely interventions. Initially 

applied in fields like agriculture and meteorology, forecasting has evolved to incorporate advanced 

methods such as time series analysis, econometric models, and machine learning algorithms. In livestock 

disease management, these techniques are crucial for analyzing complex data patterns, including 

environmental factors, animal populations, and historical disease incidence. The ability to predict 

disease dynamics allows for effective disease prevention, minimizing economic losses and supporting 

rural livelihoods. 

 

                 R programming plays a central role in developing and applying these forecasting models. As 

an open-source platform, R offers extensive tools for statistical analysis, machine learning, and data 

visualization. Specialized R packages like forecast, tsibble, prophet, and caret provide an environment 

for constructing robust models that predict livestock disease risks. The integration of machine learning 

models within R enhances forecasting accuracy by identifying non-linear relationships and patterns that 

traditional models may miss. Additionally, R’s visualization tools, such as ggplot2 and shiny, enable the 

creation of dynamic and interactive visualizations, making complex forecasting results more accessible 

to stakeholders. 

 

                  The efficiency of machine learning (ML) models in handling high-dimensional, complex 

datasets lies in their ability to automatically select relevant features, model intricate relationships, and 

process large volumes of data with minimal human intervention. Models such as random forests, support 

vector machines (SVM), neural networks, gradient boosting machines (GBM), k-nearest neighbors 

(KNN), decision trees, and ensemble methods have demonstrated superior performance in livestock 

disease forecasting. These models excel in both classification tasks, where random forests, SVMs, and 

neural networks accurately categorize disease occurrences, and in forecasting tasks, where models like 

recurrent neural networks (RNN) and long short-term memory (LSTM) predict disease outbreaks based 

on temporal data. Their ability to capture non-linear interactions and complex relationships within 

datasets significantly enhances prediction accuracy compared to traditional statistical approaches. As 

more data becomes available, ML models continue to refine their predictions, offering real-time, data-

driven insights that are essential for timely and effective disease intervention and control strategies. 
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The document outlines a four-stage workflow for livestock disease forecasting: 

 

Data Capturing: The process of data capturing involves the systematic collection of comprehensive 

and high-quality data from sources such as veterinary records, environmental databases, and historical 

disease trends. Accurate and detailed data is the foundation for any predictive model, as it enables the 

detection of underlying patterns and relationships that drive disease outbreaks. High-quality data ensures 

that models can identify complex, non-linear interactions between variables, such as the influence of 

environmental factors on disease spread. Without accurate data capturing, the subsequent steps in the 

modelling process are compromised, leading to biased or unreliable predictions. 

 

Data Processing: Data processing involves cleaning, normalizing, and aggregating raw data to ensure 

consistency and reliability across datasets. This step is crucial for addressing missing values, handling 

outliers, and performing necessary transformations such as scaling or encoding variables. Through 

techniques like imputation for missing data and normalization to standardize variables, the dataset 

becomes suitable for machine learning and statistical models. Processing also involves feature 

engineering, where new variables are derived to enhance the model's predictive power. Proper data 

processing ensures that the model inputs are accurate and that the model is capable of learning 

meaningful relationships without being influenced by noise or outliers. 

 

Data Modelling: Once the data is processed, both statistical and machine learning models are applied 

to predict future disease risks. This step involves selecting the appropriate models based on the nature 

of the data and the prediction task. Statistical models like generalized linear models (GLMs) capture 

linear relationships, while machine learning models such as random forests, support vector machines 

(SVM), and neural networks identify complex, non-linear patterns. By training on historical data, these 

models can forecast future disease outbreaks, accounting for interactions between environmental, 

biological, and historical variables. The accuracy of these predictions is heavily dependent on the quality 

of data and the appropriateness of the model chosen. 

 

Data Communication: After the model produces forecasts, data communication translates the results 

into actionable insights through reports, visualizations, and interactive dashboards. This step is critical 

for ensuring that stakeholders, such as veterinarians, policy makers, and disease control agencies, can 

understand and interpret the results. Effective data communication not only presents the forecast but 

also conveys uncertainty, confidence intervals, and risk factors associated with the predictions. Clear, 

data-driven communication allows for timely and informed decision-making, enabling the 

implementation of necessary interventions to mitigate disease risks and improve animal health 

outcomes. 

 

Why R Programming? 

 

     R programming is exceptionally suited for livestock disease forecasting due to its robust 

computational capabilities and extensive suite of statistical tools. The efficiency of R in managing large, 

complex datasets is underpinned by its advanced memory management system, which allows for 

effective in-memory data manipulation. This capability is further enhanced by specialized packages like 

data.table and bigmemory, which provide optimized data structures and algorithms to handle extensive 
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datasets without overwhelming system memory. R's storage capacity is augmented through these 

external memory packages, enabling it to manage and analyse datasets that exceed the physical RAM 

limits of a machine. This is achieved through techniques such as data chunking and virtual memory 

management, which ensure that operations on large datasets remain feasible and efficient. 

 

   Additionally, R's integration with parallel and distributed computing frameworks allows for the 

scaling of computations across multiple processors and nodes, optimizing both performance and 

memory usage. This is crucial for processing and analysing voluminous data typical in livestock disease 

forecasting. R's support for GPU acceleration via packages like keras and tensorflow further extends its 

computational capabilities. By leveraging Graphics Processing Units (GPUs), R accelerates the training 

and execution of complex machine learning models, particularly deep learning algorithms that require 

substantial computational resources. 

 

   These features collectively make R an indispensable tool for livestock disease forecasting. Its 

ability to handle large datasets, manage memory efficiently, and utilize advanced computational 

resources ensures that it can address the intricate demands of modelling, forecasting, and visualizing 

disease trends with precision and effectiveness. 

 

NIVEDI's Contribution to Livestock Disease Management 

 

             The ICAR - National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) 

plays a critical role in addressing economically significant livestock diseases in India. NIVEDI's success 

in eradicating diseases like Rinderpest demonstrates the effectiveness of predictive strategies. Building 

on this, NIVEDI has focused on 15 priority livestock diseases, developing a comprehensive database 

that supports the National Animal Disease Referral Expert System (NADRESv2). This system, powered 

by advanced forecasting methodologies and R programming, provides monthly disease forewarnings, 

disseminated through bulletins to national and state-level animal husbandry departments. These 

forewarnings enable veterinarians to take preventive measures, reducing the likelihood of disease 

outbreaks and protecting the livestock sector. 

 

     Through its integration of predictive modelling, data analytics, and R programming, NIVEDI has 

developed a scientifically robust system that enhances livestock health management in India. The 

methodologies outlined in this document not only advance the technical precision of disease forecasting 

but also contribute to the broader goal of sustaining rural economies and improving public health. 

 

SUMMARY 

 

                 This document serves as a detailed guide to the scientific methods and R programming codes 

used in forecasting livestock diseases in India. By combining advanced statistical techniques, machine 

learning models, and comprehensive data handling capabilities, the framework presented here equips 

researchers, veterinarians, and policymakers with the tools needed for effective disease prediction and 

control. NIVEDI's efforts, supported by NADRESv2, underscore the importance of accurate forecasting 

in safeguarding the livestock industry and enhancing rural livelihoods. 
 



 

 

3. INTRODUCTION TO NADRES v2 
 

The geographic and seasonal distribution of many infectious diseases are associated with climate 

and therefore the possibility of using seasonal climate forecasts as predictive indicators in disease early 

warning system (EWS) became imminent. In this context, ICAR-NIVEDI, in its quest for achieving better 

livestock health, had developed an interactive web portal named “National Animal Disease Referral Expert 

System (NADRES)” during early part of the first decade of the millennium. The web portal, which was 

developed from the financial support of National Agricultural Technology Project, was launched in the year 

2005. The portal which is interactive, allows the user/stakeholder to access livestock disease forewarning 

(n=13) at the district level for entire country two months in advance. The portal which was initially built on 

oracle platform was later changed to MySQL platform to store the administrator provided disease 

information and other relevant meteorological and risk factor information. However, with the availability 

of remote sensed satellite images and the advancement in information technology and statistical algorithms, 

the upgradation of NADRES became inevitable. To this end, a newer version of NADRES (NADRES V2) 

has been developed. 

How it is different from previous version? 

In brief, it can be said that NADRES V2 underwent a sea change not only in its internal structure but 

also in its physical design. As a result, now the central menu bar consists of Home, about us, Risk factors, 

Analysis, Livestock disease, post prediction validation and contact details. Risk factors menu comprises of 

details on resolution, time interval, units and source of 18 meteorological and 5 remote sensing parameters. 

Analytics menu has various analysis options. The newly created livestock disease menu has the details 

regarding species affected, clinical signs and preventive measures to be adopted for the 15 economically 

important diseases. Post prediction validation menu contains the outbreak reports vs prediction. The menu 

bar on the RHS tabs include online GIS, state wise Livestock disease forecast, district wise Livestock 

disease forecast, Epi-calculator, download links for mobile app, etc. The website now hosts disease maps 

in the form of choropleth maps for 15 diseases in two time periods (1990-2000 and 2000-2018). Similarly, 

disease trends plots exhibit periodic regression plots providing future trend for the disease. On the LHS, 

Login menu is provided for authorized persons to login and enter disease details and other related 

parameters. Disease maps provide choropleth maps for 15 diseases in two time periods (1990-2000 and 

2000-2018) is presented. Disease trends- Periodic regression plots are exhibited for prediction of the 

diseases. Auto-messaging option has been created to send the reminders in the form of text messages to 

concerned PI’s and Co-PI’s of NADEN centers for submission of outbreak reports. This message is sent 

weekly to all the concerned officials. Additionally, a message is sent to the concerned veterinary officers 

in Karnataka for initiation of preventive measures for the forewarned diseases at the block level. Plans are 

in place to incorporate farmers’ and local vets’ mobile numbers in to the list so that they may be asked to 

initiate preventive measures for the forewarned diseases. 
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Fig 3.1. NADRES V2 Home page 

The forewarning methodology used is unique and has not been used earlier for livestock disease 

forewarning in India. Following few paragraphs describe about the forewarning methodology used. It is a 

well-known fact that weather plays an important role in the precipitation of many diseases and therefore, 

the climatic parameters such as land surface temperature (LST), precipitation, wind velocity, humidity etc 

are considered as risk parameters. These parameters along with other non-climatic parameters such as 

livestock population, density, Normalized Differential Vegetation Index (NDVI), soil moisture constitute 

the overall risk parameters. A total of 23 such parameters are collected/generated at village level and then 

aggregated to district level before these are used for analysis. 

In addition to the output provided at interactive web portal, the NADRES output are also published 

in the form of monthly livestock disease forewarning bulletins. The prediction results come with a 

disclaimer that forewarnings do not take into account of the control measures that already in situ and also 

may not be realistic for those regions where the data is either unavailable or limited. This bulletin provides 

the likely occurrence of the 15 shortlisted diseases two months in advance at the district level, disease 

forewarning maps, prediction accuracy, details on diseases, species affected, clinical signs and its 

preventive measures.  

In summary, it can be said that NADRES V2 has underwent substantial changes not only in its 

internal structure but also in its physical design and can be a useful tool for visitors of the website, farmers, 

vets, policy makers etc.  
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4. Forewarning Methodology 
Preamble 

NADRES v2 is an early warning system powered by Artificial Intelligence with set of capacities needed 

to generate and disseminate timely and meaningful warning information that enables at-risk livestock 

population, farmers and organizations to prepare and act appropriately and in sufficient time to reduce the 

livestock disease incidence. 

Objectives  

▪ Development of forecasting model for the major livestock diseases and predicting the risk of 

livestock diseases in advance of two months. 

▪ Development of state of art of communication models to communicate risk of livestock diseases 

to the stake holders. 

 

I. Materials and data acquisition 

Livestock disease data 

Previous 10 years’ livestock disease outbreak data retrieved from the NADRES database linked with Risk 

factors data. 

 

Livestock population data 

The population data at village level for five major livestock species viz., cattle, buffalo, sheep, goat and 

pigs were obtained from 20th Livestock census (2019) from Department of statistics, DAHD, GOI. 

 

Species-wise & Category-wise Livestock Population (in thousands) 

      

Sl No Species Category Population 

in 2012 

Population 

in 2019 

% Change 

1 Cattle Exotic 39732 51356 29.3 

  Indigenous 151172 142106 -6 

  Total 190904 193462 1.3 

2 Buffalo Total 108702 109852 1.1 

3 Sheep Exotic 3781 4088 8.1 

  Indigenous 61288 70172 14.5 

  Total 65069 74260 14.1 

4 Goat Total 135173 148885 10.1 

5 Pig Exotic 2456 1897 -22.8 

  Indigenous 7837 7159 -8.7 

  Total 10293 9056 -12 

6 Yaks Total 77 58 -24.7 

7 Mithuns Total 298 386 29.5 

8 Horses & Ponies Total 625 342 -45.3 

9 Mules Total 196 84 -57.1 

10 Donkeys Total 319 124 -61.1 

11 Camels Total 400 252 -37 

Total Livestock   512056 536761 4.8 
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Meteorological and Remotely Sensed Data: 

 

The parameters such as air temperature (0C), perceptible water (mm), Precipitation rate (mm), 

pressure (millibar), relative humidity (%), Vwind (m/s), U wind (m/s), Soil temperature (0C), Vapour 

pressure(hPa), Wet day frequency, and sea level pressure (millibar) were extracted from National Centre 

for environmental prediction (NCEP). The parameters such as potential evapotranspiration (PET), 

Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Land Surface Temperature (LST), Normalised 

Difference Vegetation Index (NDVI) were extracted from remote sensed images from MODIS website 

(https://modis.gsfc.nasa.gov/). In brief, the MODIS products from NASA-TERRA satellite was 

downloaded for the Indian locations by specifying the tiles (H24V5, H25V6, H24V6, H24V7, H25V7, 

H25V8, H26V7, H26V6) from 2001 to till date.  

The details are given below; 

PRODUCT Science Data Sets (HDF Layers) 

MOD15A2H Lai_500m (Leaf area index) 8 days average 

MOD16A2 PET_500m (Total Potential Evapotranspiration) 8 days average 

MOD11A2 LST_Day_1km (Daytime Land Surface Temperature) 8 days average 

MOD13A1 
i. 500m 16 days NDVI (Normalized Difference Vegetation Index) 

ii. Enhanced Vegetation Index (EVI) 16 days average 

The downloaded HDF files (Datasets, which are multidimensional arrays (layers) of a homogeneous type) 

were converted to GeoTIFF files (single layer data) using R packages, which were later used to extract the 

parameters by linking it with the sinusoidal values of the Indian villages. The scale factors were multiplied 

for the extracted values as specified by the MODIS data products to get the values of the parameters. As 

shown above, the atmospherically corrected NDVI was collected on 16-day interval at 250-meter resolution 

using MODIS product MOD13A1 and LST was collected on 8-day interval using MOD11A2 at 1 KM 

resolution. 

The parameters such as rainfall, Soil moisture (%), and Wind speed (m/s) were obtained from 

Global Land Data Assimilation System of NASA (https://disc.gsfc.nasa.gov). The remaining parameters 

were downloaded from climatic research unit (CRU) of University of East Anglia website. It is worth 

mentioning that the entire process of extraction, assimilation, processing and aligning have been done using 

R programming language and R environment.  After aligning the climatic and non-climatic data with the 

disease and the livestock population data (aggregated at the district level), the statistical analysis was 

performed in the R environment.   

Static and Dynamic set 

Two distinct sets of data regarding risk variables have been established: a static dataset comprising the 

average weather parameters spanning a decade, from 2011 to 2022, and a dynamic dataset containing recent 

years' data, specifically from 2023 and 2024. This categorization facilitates a scientific approach to 

analyzing temporal patterns, trends, and variations in the designated risk factors, allowing for 

comprehensive assessment and prediction of potential impacts. 

 

 

 

https://modis.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
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Delta-Weather parameter 

In the context of the National Animal Disease Referral and Export System (NADRES), made 

significant strides by enhancing database capabilities. original "Static Set" covered a 10-year average of 23 

weather parameters from 2011 to 2022. Now, took a bold step forward, introducing a more intricate 

analysis. The upgraded "Static Set" remains the foundation but with a notable addition. Alongside the initial 

23 parameters, we have included another set of 23 parameters known as "Delta" variables. These represent 

the differences between corresponding weather parameters from 2001 to 2021. This detailed differencing 

process offers valuable insights into long-term trends in meteorological conditions, especially relevant to 

understanding animal disease dynamics. In addition, we have introduced the "Dynamic Set" bringing 

another layer of sophistication. This set focuses on a more recent timeframe, using 2-year averaged 

parameter values for 2023 and 2024. Derived from data spanning from 2018 to 2023, the Dynamic Set also 

includes 23 "Delta" parameters, reflecting ongoing changes in climatic trends.  

This dynamic approach ensures that NADRES stays updated with the latest meteorological patterns, 

crucial for timely responses in the early detection of animal diseases. With a total of 46 parameters now, 

this upgraded database is a cornerstone for NADRES. The integration of static and dynamic perspectives 

solidifies our position in meteorological analysis. NADRES is a reliable tool for animal disease 

management and a vital resource for informed decision-making in the intricate landscape of animal disease 

referral and export processes. 

Initially, two regression models and Seventeen machine learning models were applied to test their suitability 

to fit the data and in all, Fourteen models; two regression model (Generalized Linear Model (GLM), 

Generalized Additive Model (GAM), and twelve machine learning models, viz., Gradient Boosting 

Machine Learning Algorithm (GBM), Random Forest (RF), Multivariate Adaptive Regression Splines 

(MARS), Extreme Gradient Boosting Machine (XGM), Support Vector Machine (SVM), Decision Trees 

(Tree_prob), Least Absolute Shrinkage and Selection Operator (Lasso), Functional Data Analysis (FDA), 

Gaussian Process (GP), Neural Network (NN), Multinomial Logistic Regression (Multinom_probs), and 

Kernel Support Vector Machine (KSVM) which fitted to data well were incorporated for the purpose of 

disease prediction.  

The models were trained using the case and control data available at ICAR-NIVEDI. Validation of the 

models were done by dividing the total observations for a particular disease into marker samples and 

validation samples and accuracy was tested in terms of discrimination power, which was done using 

Receiving Operating Characteristics (ROC), Cohen Kappa (Heildke Skill Score) and True Skill statistics 

(TSS) Accuracy, Error Rate, Precision, Sensitivity, Specificity, F1 score, Log Loss, and Gini-Coefficient. 

Once the models produce the probability value, it was used for categorizing the risk. Briefly, when all the 

models produce the p value of more than 0.5, then the highest p value is used for determining the high-risk 

category. If all the models or any one model produces the p value of less than 0.5, then the lowest p value 

was used for categorizing lower risk. This was done to minimize the false alert. Thus, the risk predictions 

based on the probability values ranging from 0-1 are made as follows; Very High Risk (p=0.81-1.0), High 

Risk (p=0.61-0.80), Moderate Risk (p=0.41-0.60), Low Risk (p=0.21-0.40), Very Low Risk (p=0.0-0.20) 

and No Risk (p=0.0) for the occurrence of a said disease. It is believed that categorizing districts in to 

various risk categories will help the stake holders to effectively utilize the available resources (money and 

manpower).  
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II. NADRES v2 Data Flow and Data Processing Diagram 

A) Data Flow Diagram: 

 

Fig 4.1. NADRES V2 Data Flow Diagram. 

 

B) Artificial Intelligence enabled Data Capturing and Forewarning System: 

 

Fig 4.2. Data Capturing and Forewarning system  
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III. Weighted Outbreak Score 

The outbreak data for the month of forecasting is extracted from NADRES database for the period of 10 

years from current year. Outbreak data of 15 important livestock diseases are considered. The data is 

aggregated at district level and the weighted score is defined based on the number of outbreaks for each 

district in each month considering last 10 years. The weightage score was assigned as 0 for less than three 

number of outbreaks in the last 10 years for selected month, score 1 for   3–6 number of outbreaks and 2 

for more than 6 outbreaks. This weightage score for each district is labelled as risk variable in building the 

models and risk maps. 

 

IV. Feature Extraction and Data Engineering 

Data collection from different sources could be internal and or external to satisfy the objectives of 

forewarning requirements, data can be of any format, CSV, XML, JSON etc. In this processing of data and 

feature engineering, we focus mainly on understanding the specified data set and cleaning the dataset, a 

better understanding of features and their relationships, extracting essential variables, handling missing 

values and human error, identifying outliers, transforming features if there are outliers so that either 

truncates a data above a threshold or transform the data using log or any other transformation, scaling the 

features extracted. This process would be maximising the insights into a dataset. 

 

V. Forecasting of Weather Parameters 

Weather forecasting has been one of the most challenging problems around the world because of both its 

practical value in meteorology and the popular sphere for scientific research.  Weather forecast systems are 

among the most complex equation systems that computer has to solve. A great quantity of data, coming 

from satellites, ground stations and sensors located around our planet send daily information that must be 

used to foresee the weather situation in next hours and days all around. Weather forecasts provide critical 

information about future weather. There are various techniques involved in weather forecasting, from 

relatively simple observation of the sky to highly complex computerized mathematical models. Further, 

forecast products by Indian Metrological department were used for validation of our forecasts 

(https://mausam.imd.gov.in/imd_latest/contents/extendedrangeforecast.php).   

 

 Following are the basic steps of forecasting process: 

       1. Determine the forecast's purpose 

        2. Establish a time horizon 

        3. Select a forecasting technique 

        4. Gather and analyse data 

        5. Perform the forecast 

        6. Monitor the forecast and use it in prediction of disease 

 

 

 

 

 



11 
 

 

 

Statistical Models used for forecasting of weather and remotely sensed variables 

ARIMA stands for Autoregressive Integrated Moving Average. ARIMA is also known as Box-Jenkins 

approach. Box and Jenkins claimed that non-stationary data can be made stationary by differencing the 

series, Yt. The general model for Yt is written as, 

Yt =ϕ1Yt−1 +ϕ2Yt−2…ϕpYt−p +ϵt + θ1ϵt−1+ θ2ϵt−2 +…θqϵt−q 

Where, Yt is the differenced time series value, ϕ and θ are unknown parameters and ϵ are independent 

identically distributed error terms with zero mean. Here, Yt is expressed in terms of its past values and the 

current and past values of error terms. 

The ARIMA Model combines three basic Methods: 

• Auto Regression (AR) – In auto-regression the values of a given time series data are regressed on 

their own lagged values, which is indicated by the “p” value in the model. 

• Differencing (I-for Integrated) – This involves differencing the time series data to remove the trend 

and convert a non-stationary time series to a stationary one. This is indicated by the “d” value in the 

model. If d = 1, it looks at the difference between two-time series entries, if d = 2 it looks at the 

differences of the differences obtained at d =1, and so forth. 

• Moving Average (MA) – The moving average nature of the model is represented by the “q” value 

which is the number of lagged values of the error term. 

This model is called Autoregressive Integrated Moving Average or ARIMA (p, d, q) of Yt.  We will follow 

the steps enumerated below to build our model. ARIMA models were run in 18 combinations of p, d, q. 

Based on the minimum AIC value, the order of ARIMA model was selected. This order was used for the 

prediction of all the weather parameters used in developing disease forewarning models.   

 

 

Fig. 4.3. Risk parameter Prediction using ARIMA model in Python 
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VI. Implementation of Principal Component Analysis  

Large datasets are gradually common and are often difficult to interpret. Principal Component Analysis 

(PCA) is a technique for reducing the dimensionality of such datasets, increasing the interpretability but at 

the same time, minimizing the information loss. The PCA is employed in NADRES v2 by creating new 

uncorrelated variables that successively maximize the variance. This means that ` preserving as much 

variability as possible` translates into finding new variables that are linear functions of those in the original 

dataset, that successively maximize variance and that are uncorrelated with each other. Determining such 

new variables, the principal components (PCs) reduce to solve an eigenvalue/eigenvector problem. PCA 

can be based on either covariance matrix or the correlation matrix and the main use of PCA are descriptive.  

In the present study, all the meteorological and remote sensing variables are considering for PCA, with 

correlation matrix, the final output of principal components which are independent of each were considered 

for further ML modelling and risk estimation. 

 

VII. Machine Learning Models 

Disease outbreak data were aligned with generated risk variables to the respective latitude and longitude, 

which were subjected to climate-disease modelling. A number of models were fit to aligned data and tested 

for accuracy in terms of discrimination power. Two regression models, Generalized Linear Models (GLM) 

and Generalized Additive Models (GAM) and Seventeen machine learning algorithms, i.e. Random Forest 

(RF), Boosted Regression Tree (BRT), Artificial Neural Network (ANN), Multiple Adaptive Regression 

Spline (MARS), Flexible Discriminant Analysis (FDA), Classification Tree Analysis (CTA), Extreme 

Gradient Boosting Machine (XGM), Support Vector Machine (SVM), Decision Trees (Tree_prob), Least 

Absolute Shrinkage and Selection Operator (Lasso), Functional Data Analysis (FDA), Gaussian Process 

(GP), Neural Network (NN), Multinomial Logistic Regression (Multinom_probs), Kernel Support Vector 

Machine (KSVM), Ridge Regression, Naive Bayes were employed for disease modelling. Different 

modelling methods return different types of ‘model object’ and all these model objects could be used for 

the predict function to make predictions for any combinations of values of independent variables. Response 

plots were created to explore and understand model predictions.  

 

The fitted models were assessed for their discriminating power using Receiving Operating Characteristic 

(ROC) curve, Cohen’s Kappa (Heildke Skill Score), True Skill Statistics (TSS) Accuracy, Error_rate, 

Precision, Sensitivity, Specificity, F1 score, Loglass, Gini-Coefficient. These measures were used to 

evaluate the quality of predictions based on presence-absence data. Raster Stack was used to combine the 

results of individual predictions by different model methods. All the models were assessed for overfitting. 

 

The outcome of best fitted models was in probability of disease occurrence and was categorised into 6 risk 

levels as No risk (NR), Very low risk (VLR), Low risk (LR), Moderate risk (MR), High risk (HR) and Very 

high risk (VHR) for enabling the stakeholders to take appropriate control measures by suitably allocating 

available resources.   
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5. ACCURACY OF PREDICTION 
 

Serial No. Diseases Accuracy (%) 

1.  Anthrax 100 

2.  Babesiosis 99.45 

3.  Black quarter 98.49 

4.  Bluetongue 98.21 

5.  Classical swine fever 99.59 

6.  Enterotoxaemia 98.90 

7.  Fasciolosis 99.73 

8.  Foot and mouth disease 99.18 

9.  Hemorrhagic septicemia 96.15 

10.  Lumpy skin disease 94.09 

11.  Peste des petits ruminants 99.86 

12.  Sheep & Goat pox 97.25 

13.  Theileriosis 97.39 

14.  Trypanosomiasis 98.76 

 

Aggregation and prediction of livestock diseases at district level leading to higher accuracy. 

• Formula Used: The Accuracy of disease prediction was calculated using the following formula. 

 

TP-True Positive Observations, TN-True Negative Observations, Total- Total observations. 

▪ Internal Accuracy was performed using 10 years of data. Accuracy obtained was >90% for all the 

diseases predicted. 

▪ Despite the power of climate and disease risk models, considerable uncertainties remain, identifying 

these uncertainties, highlighting importance of improved data may improve the model accuracy, 

realism, confidence, together with translating uncertainties in model inputs into uncertainties in 

model outputs, are important benefits of modelling. 
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6. MORAN’S I FOR CLUSTERING OF LIVESTOCK DISEASES 

 
Moran's I is a tool that measures spatial autocorrelation (feature similarity) based on both feature 

locations and feature values simultaneously. Given a set of features and an associated attribute, it evaluates 

whether the pattern expressed is clustered, dispersed, or random. The tool calculates the Moran's I Index 

value and both a Z score and p-value evaluating the significance of that index. In general, a Moran's Index 

value near +1.0 indicates clustering while an index value near -1.0 indicates dispersion. 

Autocorrelation tool, the null hypothesis states that there is no spatial clustering of the values associated 

with the geographic features in the study area". When the p-value is small and the absolute value of the Z 

score is large enough that it falls outside of the desired confidence level, the null hypothesis can be rejected. 

If the index value is greater than 0, the set of features exhibits a clustered pattern. If the value is less than 

0, the set of features exhibits a dispersed pattern. 

 

 

7. R SOFTWARE 

 
R is a programming language and software environment for statistical analysis, graphics 

representation and reporting. R is a simple and effective programming language, which includes 

conditionals, loops, user defined recursive functions and input and output facilities. R statistical software 

version 3.6.2 (version 3.6.2, R Foundation for Statistical Computing, Dark and Stormy 

Night. https://www.R-project.org/)  was used as an integrated suite for data mining, calculation and 

graphical display. Several R packages like openxlx, raster, RMySQL, rgdal, RColorBrewer, sqldf, sp, spdep, 

xlsx, plyr, randomFores, dismo, SDMTool, dplyr, tmapand data tablewere used for data extraction, data 

alignment, annotation, analysis, modelling and risk mapping.

https://www.r-project.org/#_blank
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8. FOREWARNING OF LIVESTOCK DISEASE FOR EVERY MONTH 

 

I. DISEASES, SPECIES AFFECTED CLINICAL SIGNS AND ITS PREVENTIVE 

MEASURES. 

Sl 

No. 

Disease Species 

Affected 

Clinical Signs Preventive Measures 

1. African Swine 

Fever (ASF) 

Primarily 

affects 

domestic and 

wild pigs 

High Fever, Lethargy 

and Weakness, Red 

or Blue Skin 

Discoloration, Pig 

display respiratory 

signs such as 

coughing, difficulty 

breathing, and nasal 

discharge, causes 

digestive symptoms, 

including diarrhoea 

and vomiting. 

involves strict measures like 

isolating new pigs, regularly 

disinfecting facilities, and 

controlling the movement of pigs 

and pig-related items. Early 

detection through surveillance, 

educating farm personnel, and 

managing wild boar populations 

are crucial, while proper disposal 

of infected material and quick 

reporting of suspected cases 

contribute to effective prevention 

and control. Collaboration among 

authorities, farmers, and the 

public, along with clear 

communication about ASF and its 

preventive measures, plays a key 

role in safeguarding pig 

populations and the swine 

industry. 

2. Anthrax (AX) Most of the 

mammals and 

ruminants are 

highly 

susceptible. 

Pigs and 

Horses are 

moderately 

susceptible. 

Carnivores are 

relatively 

resistant. 

Convulsion and 

sudden death with 

oozing of blood from 

natural orifices such 

as rectum and nose 

prior to death. 

Occasionally oedema 

develops in the throat 

and shoulder over a 

period of one week 

before death. 

Ring vaccination and reporting of 

the disease is advised. Vaccination 

to be done in consultation with the 

veterinarians and as decided by 

state animal husbandry authorities. 

Strict biosecurity measures may be 

followed. Carcass may be disposed 

by deep burying covered with lime 

powder. Contaminated area may 

be disinfected with 4% formalin or 

10% caustic soda. Grazing area 

may be restricted. 

3. Babesiosis (BA) Cattle. Cross 

breeds are 

more 

susceptible. 

High temperature, 

jaundice like 

symptoms, yellowish 

mucosal membrane 

of eye, rectum and 

coffee colour urine. 

Periodical application of 

acaricides in and around the 

animal shed and on the animals. 

For therapeutic application, 

Diaminazine or Imidocarb can be 

useful. 
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4. Black Quarter 

(BQ) 

Common 

disease of 

cattle and 

sheep, but 

occasionally 

goats and pigs 

also suffer 

from the 

disease. 

High fever and 

lameness followed 

by swelling in the 

neck, shoulder, 

lumbar, gluteal and 

sacral regions. Skin 

over the affected area 

become dark and 

crepitate on 

palpation. Loss of 

feed intake, colic, 

lateral recumbency, 

dyspnoea and death. 

Affected animals may be treated 

with suitable antibiotics. 

Vaccination to be done in 

consultation with the veterinarians 

and as decided by state animal 

husbandry authorities. Strict 

biosecurity measures may be 

followed. Grazing area may be 

restricted. Carcass may be 

disposed hygienically. 

5. Bluetongue (BT) Sheep are more 

susceptible 

than goats. 

Fever, swelling of 

face, neck, eyelids 

respiratory distress, 

nasal discharge, 

Salivation, necrotic 

ulcers on tongue, 

dental pad, gum, lips 

hyperaemia of 

muzzle and may 

bleed at muco-

cutaneous junction. 

Affected tongue may 

become swollen, 

cyanotic and purple 

blue in colour – 

‘bluetongue’. 

Vector control using insecticides 

and good water management. 

Vaccination of susceptible animals 

preferably in the month of May. 

Do not shear sheep during winter 

months. Restriction in animal 

movement, segregation of affected 

animals and symptomatic 

treatment. Strict biosecurity 

measures. 

6. Enterotoxaemia 

(ET) 

Common 

disease of 

sheep and 

goats 

especially 

among the 

young animals. 

Dullness, 

opisthosomas, 

convulsions, coma 

and sudden death. 

Affected adult sheep, 

which survive for 

several days May 

show diarrhoea and 

staggering. 

Affected animals may be treated 

with suitable antibiotics. 

Vaccination to be done in 

consultation with the veterinarians 

and as decided by State Animal 

Husbandry Authorities. Strict 

biosecurity measures may be 

followed. Carcass may be disposed 

hygienically. Grazing area to be 

restricted, stall fed, vitamins and 

probiotics may be provided. 
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7. Fasciolosis (FA) Cattle, buffalo, 

sheep and 

goats.  

Progressive anaemia, 

pale mucous 

membrane, sub-

mandibular oedema 

(Bottle jaw), loss of 

appetite, weakness, 

isolated from flock 

while grazing, loss in 

production. 

The animal should not be allowed 

to graze in water stagnant fields or 

submerged fodder should not be 

given directly to the animals. The 

submerged fodder can be 

processed through hay/silage 

preparation in order to destroy the 

meta cercariae. The affected 

animals can be treated with Carbon 

tetrachloride/ 

Rafoxanide/Nitroxinils/ 

Niclofolan/Closantel/Oxyclozanid

e, under the strict supervision of 

veterinarian. 

8. Foot and Mouth 

Disease (FMD) 

Cattle, buffalo, 

sheep, goats 

and pigs are 

often affected 

domesticated 

species, but the 

disease is more 

severe in cattle 

and pigs. 

Fever, loss of feed 

intake, drop in milk 

production, drooling 

of saliva like ropey 

string, vesicles 

develop on the 

tongue, lips, gums, 

and palate and 

eventually rupture. 

Concurrent to oral 

lesions, vesicles also 

appear in inter digital 

skin and coronary 

band of the feet. The 

animal may open and 

close its mouth with a 

characteristic 

smacking sound. 

Sheep and goats may 

show lameness. In 

pigs, lesions may be 

seen on snout and 

also on the feet. 

Regular vaccination and 

seromonitoring. Disinfection with 

sodium carbonate (4%) or 10% 

washing soda and strict biosecurity 

measures to be followed and 

animal movement may be 

controlled. 
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9. Haemorrhagic 

septicaemia (HS) 

Common 

disease for 

cattle and 

buffaloes, but 

can also occur 

among other 

species such as 

pigs, sheep, 

goats and many 

wild animals. 

The disease starts 

with high fever, 

respiratory distress 

and haemorrhages 

maybe seen on the 

mucous membranes. 

There is 

lachrymation, nasal 

discharge, drop in 

milk production and 

anorexia. As the 

disease progress ear 

droops and the 

animals will be 

prostrated with 

cyanosis of mucous 

membranes. There 

may be oedema along 

the head, neck, 

thorax, vulva and 

anal areas. Sudden 

death occurs within 

few hours of clinical 

signs. 

Affected animals may be treated 

with suitable antibiotics. 

Vaccination to be done in 

consultation with the veterinarians 

and as decided by state animal 

husbandry authorities. Strict 

biosecurity measures may be 

followed. Carcass may be disposed 

hygienically and stress factors may 

be reduced by following good 

animal husbandry practices. 

10. Lumpy skin 

disease (LSD) 

Common 

disease for 

Cattle, Buffalo 

and other 

domestic 

animals 

Fever, reduced milk 

production and skin 

nodules. Mastitis, 

swelling of 

peripheral lymph 

nodes, loss of 

appetite, increased 

nasal discharge and 

watery eyes are also 

common. Temporary 

or permanent 

infertility occur 

among infected cows 

and bulls 

Vaccination of susceptible animals 

of above 3 months old age. 

Restriction on animal movement, 

strict biosecurity measures and 

proper disposal of carcass. 

11. Peste des Petits 

Ruminants (PPR) 

Goats and 

sheep are most 

affected 

domestic 

animals. 

Fever, nasal and 

ocular discharge, 

respiratory distress, 

necrotic lesions in 

buccal mucosa, gum, 

dental pad, palate, 

tongue and diarrhoea. 

Animals may die 

because of 

dehydration and 

pneumonia. 

Vaccination of susceptible animals 

of above 3 months old age. 

Restriction on animal movement, 

strict biosecurity measures and 

proper disposal of carcass. 
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12. Sheep and Goat 

pox (SGP) 

Sheep and 

Goats 

Respiratory distress 

and pock lesions over 

the non-hairy parts of 

body, more common 

in teat, udder, 

scortum, head, neck, 

ear, perineum, inner 

aspect of thighs and 

under tail. 

Vaccination of susceptible animals 

of above 3 months old age. 

Symptomatic treatment of affected 

animals. Restriction on animal 

movement, strict biosecurity 

measures and proper disposal of 

carcass. 

13. Classical Swine 

Fever (CSF) 

Pigs Fever, 

Conjunctivitis, 

purplish 

discolouration of 

snout, ears, abdomen, 

inner side of the legs 

and staggering gait. 

Vaccination of susceptible 

animals. Restriction on animal 

movement, strict biosecurity 

measures and proper disposal of 

carcass. 

14. Theileriosis (TE) Large 

Ruminants. 

Crossbreed 

cattle are more 

vulnerable. 

High temperature, 

yellowish eye, 

sometime eyes may 

be heavily swollen, 

icteric mucosal 

membrane of rectum, 

dark yellowish urine, 

sometime may reach 

to coffee colour. 

Antibiotic is of no 

use to check the 

fever. 

Periodical application of 

acaricides in and around the 

animal shed and on the animals. 

Therapeutic treatment with 

Buparvaquone can be useful in 

both early and advanced stages of 

the infection. 

 

 

15. Trypanosomiasis 

(TR) 

Domestic and 

wild carnivores 

and herbivores 

including 

cattle, buffalo, 

horse, donkey, 

camel, dog and 

cats. Buffaloes 

are known as 

carriers. 

Fluctuating high 

fever which is not 

responded by 

antibiotics, swollen 

lymph gland, chronic 

emaciation and 

weakness, loss of 

appetite, gradual loss 

of production. 

The affected animal should be 

treated with Diaminazine 

compounds or chloride and 

sulphate salts of Quinapyramine. 

Periodical spray of insecticide in 

and around animal shed to remove 

the flies. 
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II. SIGNIFICANT WEATHER PARAMETERS FOR LIVESTOCK DISEASE 

TABLE USING DISCRIMINANT FUNCTION ANALYSIS 

 
 

SI. 
No 

Disease Names ML Derived Significant Parameters 

1 African Swine Fever 
Air Temperature, Delta-Precipitation, Delta-Leaf 
Area Index 

2 Anthrax 
WET, Maximum Temperature, Wind Velocity, Soil 
Temperature 

3 Babesiosis 
Delta-Relative Humidity, Precipitable-water, Delta- 
Minimum Temperature 

4 Black quarter 
Wind Velocity, Potential Evapotranspiration, Air 
Temperature 

5 Bluetongue Wind Velocity, Soil Temperature 

6 Classical Swine fever 
Air Temperature, Enhanced Vegetation Index, 
Relative Humidity 

7 Enterotoxaemia 
Soil Temperature, Precipitable water, Delta- 
Precipitable water 

8 Fascioliasis 
Precipitable Water, Air Temperature, Precipitation- 
rate 

9 Foot and mouth disease 
Delta-Temperature Minimum, Precipitation-rate, 
Precipitable water, Soil Temperature 

10 Hemorrhagic septicemia Precipitable Water, Delta-Pressure 

11 Lumpy Skin Diseases 
Delta-Vapour Pressure, Minimum Temperature, WET, 
Delta- Enhanced Vegetation Index, Pressure 

12 Peste des petits ruminants 
Delta-Minimum Temperature, Precipitable water, 
Delta-Relative Humidity 

13 Sheep & Goat pox WET, Enhanced Vegetation Index, Relative Humidity 

14 Theileriosis 
Precipitable Water, Delta- Minimum Temperature, 
Precipitation-rate 

15 Trypanosomiasis WET, Precipitable-water, Delta-soil moisture 

 

 

 

 

 

 

 

 

 

Table: Significant weather parameters govern the Livestock disease incidence (forecast) 
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9. DATA STORAGE, SECURITY AND VISUALIZATION 

 

I. DATA STORAGE AND SECURITY 

 

Before proceeding to the modeling phase, livestock data must be meticulously cleaned and stored in a 

database to ensure data integrity and reliability. This critical step involves a systematic approach to 

handling and preparing the data for subsequent analytical tasks. Cleaning the data encompasses various 

processes, including the removal of duplicates, handling missing values, and correcting inconsistencies 

or errors. These steps are essential to eliminate any biases or inaccuracies that could affect the outcomes 

of the modeling process. 

 

Once the data is cleaned, it is essential to store it in a robust and efficient database management 

system such as MySQL. MySQL offers a reliable platform for data storage with powerful features for 

data manipulation, querying, and maintenance. Using MySQL queries, the cleaned data can be 

efficiently inserted into appropriate database tables, structured in a way that facilitates easy retrieval and 

analysis. The process involves defining suitable schemas that reflect the data's structure and 

relationships, ensuring optimal storage and access patterns. By leveraging MySQL's capabilities, 

researchers can ensure that the livestock data is not only securely stored but also readily available for 

advanced modeling techniques, ultimately contributing to more accurate and insightful analytical 

outcomes .CSV File: Data is initially stored or received in CSV format. 

 

▪ MySQL Database: The data from the CSV file is imported into a MySQL database for storage 

and management. 

▪ TLS/SSL Encryption: The connection between the application and the server is secured using 

TLS/SSL encryption, ensuring data privacy and integrity during transmission. 

▪ Server: The server hosts the MySQL database and serves as the endpoint for data retrieval and 

storage 

▪ Data Encryption: Protects data both in transit and at rest using tools like OpenSSL for 

TLS/SSL encryption and MySQL Enterprise Encryption for data-at-rest encryption. 

▪ Access Control: Ensures only authorized users access data, managed through MySQL's user 

management and enhanced with MySQL Enterprise Edition features. 

▪ Auditing and Logging: Tracks user activities for security monitoring, facilitated by MySQL 

Enterprise Audit plugin and Audit beat. 

▪ Data Masking: Obscures sensitive information within the database, leveraging MySQL's built-

in functions and enhanced with tools like DataMasker. 

▪ Data Integrity Checks: Verifies data integrity using checksum functions in MySQL and 

automated tools like Checksum for MySQL. 

▪ Patch Management: Keeps the database updated with security patches obtained from 

MySQL's official website and managed using tools like Patch Manager Plus. 
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▪ Incident Response: Preparedness for security incidents with documented playbooks and aided 

by log analysis tools such as Splunk for real-time monitoring and response. 

▪ Real-time Data Files Capture for Admins: Database Integration via PHP: As administrators, 

we've integrated PHP to seamlessly interact with our database system. This enables us to 

efficiently retrieve essential file data, including names, upload dates, types, and unique 

identifiers. 

▪ Dynamic Table Population: Through PHP scripting, our system dynamically populates an 

organized table structure within the HTML framework. This ensures that every file entry is 

accurately represented, providing admins with a comprehensive overview of available data 

files. 

▪ JavaScript Search Enhancement: Our implementation includes real-time search 

functionality powered by JavaScript, specifically tailored for administrative use. Admins can 

efficiently locate specific files by entering relevant keywords, streamlining the data retrieval 

process and enhancing overall system usability. 

 

 

 

 

II.  DATA VISUALIZATION (INTERACTIVE LINE GRAPH) 

 

Data visualization, particularly through interactive line graphs, plays a pivotal role in elucidating trends 

and patterns within complex datasets. These graphs allow for dynamic exploration, enabling users to 

zoom in on specific time periods, hover over data points for detailed information, and toggle various 

data series on and off. Such interactivity enhances the user's ability to interpret and analyse data, making 

it an invaluable tool in both exploratory data analysis and the communication of results. By transforming 

raw data into visual insights, interactive line graphs facilitate a deeper understanding of temporal 

changes and relationships within the dataset. 

Frontend: 

▪ HTML: Markup language for structuring the document. 

▪ JavaScript: Scripting language for dynamic behavior and interaction. 

▪ Chart.js: JavaScript library for creating interactive charts. 

 

Fig. 9.1. Data Uploading to Database 
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Backend: 

▪ PHP: Server-side scripting language for generating dynamic content. 

▪ MySQL: Relational database management system for storing and managing data. 

▪ MySQLi (MySQL Improved): PHP extension for interacting with MySQL databases using improved 

methods. 

 

Tools and Libraries: 

▪ Fetch API: Web API used in JavaScript for making asynchronous HTTPS requests to the server. 

▪ Chart.js: JavaScript library used for creating various types of charts, including line charts in this case. 

 

Development Steps: 

▪ Utilize the fetch API to retrieve data from the server. 

▪ Extract pertinent information from the fetched data through data processing. 

▪ Generate canvas elements and contexts for each chart dynamically. 

▪ Employ Chart.js to instantiate charts programmatically. 

▪ Apply Chart.js configurations for animation and styling effects. 

▪ Append canvas and chart information to the chart container. 

▪ Update the index to consecutively render the next chart in a loop. 

▪ Enhance data processing speed through efficient backend API utilization and utilization of more 

technical development language. 

 

 

 

 

 

 

 

Fig. 9.2. Updated NADRES V2 website with interactive graphs 
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10.  R PROGRAMMING SCRIPTS ALIGNED WITH THE METHODOLOGY 

 

Step 1: Convert extracted data to CSV format (Weather parameter) 

Information taken from several websites (GLDAS, MODIS, CRU, NCEP) must be converted 

from a specific format into CSV format. The extracted risk variable data from GLDAS, NOAA and 

MODIS will be in HDF format, which needs to be converted to GeoTIFF format, then convert from TIFF 

format to CSV for analysis. There are five remote sensing variables (LST, NDVI, EVI, PET, LAI), and 

those will be in hdf format. Separate codes for each variable are available, and provided below. 

 

Procedure of extracting risk parameters from GLDAS, NOAA and MODIS 
 

Extracting risk parameters data from GLDAS, NOAA, and MODIS involves a systematic and 

scientifically rigorous approach. For GLDAS (Global Land Data Assimilation System), the process begins 

by identifying relevant datasets that correspond to the risk parameters needed, such as soil moisture or 

surface temperature. These datasets can be found on the NASA Goddard Earth Sciences Data and 

Information Services Center (GES DISC) website. Once the appropriate datasets are identified, users must 

define the temporal and spatial extents for their analysis. Data can be downloaded in formats such as 

NetCDF or HDF using tools like Giovanni or direct FTP/HTTP access. Preprocessing steps include 

converting data formats if necessary, regridding spatially and temporally, and handling missing values. 

The data is then ready for analysis using statistical or modelling tools, with visualization performed 

through software like R libraries. 

For NOAA data, the process similarly begins with identifying the necessary datasets related to 

risk parameters such as precipitation or drought indices. These datasets can be accessed through NOAA's 

Climate Data Online (CDO) or the Operational Model Archive and Distribution System (NOMADS). 

Users specify the temporal and spatial resolution needed and download the data in suitable formats like 

NetCDF or CSV. Preprocessing involves converting and formatting the data, cleaning it by handling 

outliers and missing values, and aggregating or disaggregating as required. Analysis is conducted using 

statistical methods or machine learning algorithms, with visualizations created using tools like R or GIS 

software. 

Extracting data from MODIS (Moderate Resolution Imaging Spectroradiometer) involves 

identifying datasets relevant to risk parameters such as land surface temperature or vegetation indices. 

These datasets can be accessed through NASA’s Earth data portal or the LP DAAC (Land Processes 

Distributed Active Archive Center). Users define the temporal and spatial scope, ensuring the temporal 

resolution matches their analysis needs. Data is downloaded in formats like HDF or GeoTIFF using tools 

provided by Earth data or LP DAAC’s Data Pool. Preprocessing includes converting HDF files using 

tools like GDAL, reprojecting data to a common spatial reference system, and applying quality filters. 

Analysis is then conducted using spatial analysis techniques, with remote sensing software like ENVI or 

open-source tools such as QGIS and R libraries employed for data visualization. 

Each step in these processes requires meticulous attention to detail and methodological rigor to ensure 

accurate extraction and analysis of risk parameters from GLDAS, NOAA, and MODIS datasets. Step by 

step processes showed in figures. 
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Fig. 10.1. Data extraction procedure from GLDAS 

 

 

Fig. 10.2. Data extraction procedure from NOAA 

 

 

Fig. 10.3. Data extraction procedure from MODIS 
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I. Code for Converting HDF Files to TIFF Format for Land Surface Temperature (LST) Data 

 

# Load required libraries 

library(gdalUtils)    # For converting HDF to TIFF 

library(MODIS)        # For extracting dates from filenames 

library(qdap)         # For string manipulation 

 

The gdalUtils library facilitates the conversion of HDF files to TIFF format. The MODIS library is 

used to extract date information from filenames. The qdap library assists with string manipulation 

tasks. 

 

# List all HDF files in the "LST" directory 

files <- list.files(path = "LST/", pattern = ".hdf", full.names = TRUE) 

 

The list.files function retrieves a list of all HDF files within the specified directory, including the 

full file paths. 

 

# Count the total number of files 

j <- length(files) 

 

The total number of HDF files is determined by calculating the length of the list of file paths. This 

value is used to control the iteration in the subsequent processing loop. 

 

# Extract date values from filenames for output naming 

date <- extractDate(files, asDate = TRUE) 

 

The extractDate function extracts date information from the filenames. This information is used to 

create meaningful output filenames for the TIFF files. 

 

# Generate output filenames for the TIFF files 

filename <- paste0("LST/", substr(files, 23, 28), date$inputLayerDates, 

".tif") 

 

Output filenames for the TIFF files are generated by combining parts of the original filename with 

the extracted date values. 

 

# Initialize loop index 

i <- 1 

 

The loop index i is initialized to start the processing from the first file. 

 

# Loop through each HDF file to convert it to TIFF 

while (i <= j) { 

  # Retrieve subdatasets within the HDF file 

  sds <- get_subdatasets(files[i]) 
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  # Convert the first subdataset (LST) to TIFF format 

  gdal_translate(sds[1], dst_dataset = paste0("processed_", filename[i])) 

   

  # Move to the next file 

  i <- i + 1 

} 

 

Each HDF file is processed in a loop. Within the loop: 

get_subdatasets(files[i]) retrieves subdatasets from the current HDF file. 

gdal_translate(sds[1], dst_dataset = filename[i]) converts the first subdataset (assumed to be the 

Land Surface Temperature data) to TIFF format and saves it using the generated filename. 

The loop index i is incremented to proceed to the next file. 

 

II. Code for Converting HDF Files to TIFF Format for Normalized Difference Vegetation Index 

(NDVI) Data 

 

 

files <- list.files(path="NDVI/",pattern = ".hdf",full.names = T) 

 

The list.files function retrieves all HDF files within the "NDVI" directory, including their full file 

paths. 

 

j<-length(files) 

 

The total number of HDF files is determined by calculating the length of the list of file paths. This 

count is used for controlling the iteration in the processing loop. 

 

date=extractDate(files,asDate = T) 

 

The extractDate function extracts date information from the filenames, which is necessary for 

creating meaningful output filenames for the TIFF files. 

 

filename <- paste0("NDVI/", 

substr(files,24,29),date$inputLayerDates,".tif") 

 

Output filenames for the TIFF files are created by combining parts of the original filename with the 

extracted date values. 

 

i <-1 

The loop index i is initialized to start processing from the first file. 

 

while(i<=j){ sds <- get_subdatasets(files[i]); 

# sds[1] NDVI 

gdal_translate(sds[1], dst_dataset = filename[i]); 

i<-i+1; 

} 
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In this loop: 

get_subdatasets(files[i]) retrieves the subdatasets from the current HDF file. 

gdal_translate(sds[1], dst_dataset = filename[i]) converts the first subdataset (assumed to be 

NDVI data) to TIFF format and saves it using the generated filename. 

The loop index i is incremented to process the next file. 

 

III. Code for Converting HDF Files to TIFF Format for Enhanced Vegetation Index (EVI) Data 

 

files <- list.files(path="NDVI/",pattern = ".hdf",full.names = T) 

 

The list.files function retrieves all HDF files located in the "NDVI" directory, including their full 

file paths. 

 

j<-length(files) 

 

The total number of HDF files is determined by calculating the length of the file path list. This 

value is used to control the iteration in the processing loop. 

 

date=extractDate(files,asDate = T) 

 

The extractDate function extracts date information from the filenames, which is used to generate 

appropriate output filenames for the TIFF files. 

 

filename <- paste0("EVI/", 

substr(files,24,29),date$inputLayerDates,".tif") 

 

Output filenames for the TIFF files are created by combining parts of the original filename with the 

extracted date values. Note the output directory is set to "EVI" instead of "NDVI." 

 

i <-1 

 

The loop index i is initialized to start processing from the first file. 

 

while(i<=j){ 

sds <- get_subdatasets(files[i]); 

#View(sds) 

# sds[2] EVI 

gdal_translate(sds[1], dst_dataset = filename[i]); 

i<-i+1; 

} 
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In this loop: 

get_subdatasets(files[i]) retrieves subdatasets from the current HDF file. 

gdal_translate(sds[2], dst_dataset = filename[i]) converts the second subdataset (assumed to be EVI 

data) to TIFF format and saves it using the generated filename. 

The loop index i is incremented to process the next file. 

 

IV. Code for Converting HDF Files to TIFF Format for Potential Evapotranspiration (PET) Data 

 

files <- list.files(path="PET/",pattern = ".hdf",full.names = T) 

 

The list.files function retrieves all HDF files located in the "PET" directory, including their full file 

paths. 

 

j<-length(files) 

 

The total number of HDF files is determined by calculating the length of the list of file paths. This 

value is used to control the iteration in the processing loop. 

 

date=extractDate(files,asDate = T) 

 

The extractDate function extracts date information from the filenames, which is necessary for 

generating meaningful output filenames for the TIFF files. 

 

filename <- paste0("PET/", 

substr(files,23,28),date$inputLayerDates,".tif") 

 

Output filenames for the TIFF files are created by combining parts of the original filename with the 

extracted date values. The output directory is set to "PET." 

 

i <-1 

The loop index i is initialized to start processing from the first file. 

 

while(i<=j){ 

sds <- get_subdatasets(files[i]); 

#sds[3] PET 

gdal_translate(sds[3], dst_dataset = filename[i]); 

i<-i+1; 

} 

 

In this loop: 

• get_subdatasets(files[i]) retrieves subdatasets from the current HDF file. 

• gdal_translate(sds[3], dst_dataset = filename[i]) converts the third subdataset (assumed to 

be PET data) to TIFF format and saves it using the generated filename. 

• The loop index i is incremented to proceed to the next file. 
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V.  Code for Converting HDF Files to TIFF Format for Leaf Area Index (LAI) Data 

 

files <- list.files(path="LAI/",pattern = ".hdf",full.names = T) 

 

The list.files function retrieves all HDF files located in the "LAI" directory, including their full file 

paths. 

 

j<-length(files) 

 

The total number of HDF files is determined by calculating the length of the list of file paths. This 

value is used to control the iteration in the processing loop. 

 

date=extractDate(files,asDate = T,pos1 = 11,pos2 = 18) 

 

The extractDate function extracts date information from the filenames. The pos1 and pos2 

parameters specify the positions in the filename from which to extract the date. This information is 

used to generate output filenames for the TIFF files. 

 

filename <- paste0("LAI/", 

substr(files,24,29),date$inputLayerDates,".tif") 

 

Output filenames for the TIFF files are created by combining parts of the original filename with the 

extracted date values. The output directory is set to "LAI." 

 

i <-1 

The loop index i is initialized to start processing from the first file. 

 

while(i<=j){ 

 sds <- get_subdatasets(files[i]); 

 # sds[2] LAI 

 gdal_translate(sds[2], dst_dataset = filename[i]); 

 i<-i+1; 

} 

 

In this loop: 

• get_subdatasets(files[i]) retrieves subdatasets from the current HDF file. 

• gdal_translate(sds[2], dst_dataset = filename[i]) converts the second subdataset (assumed 

to be LAI data) to TIFF format and saves it using the generated filename. 

• The loop index i is incremented to proceed to the next file. 
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VI. Code for Converting TIFF Files into CSV Format 

 

library(raster) 

library(data.table) 

library(qdap) 

 

The raster, data.table, and qdap libraries are loaded to handle raster data, process data tables, and 

perform string operations, respectively. 

 

files_latlong=c('./India_districts_latlong1.csv') 

filename1 <- list.files(path="./LAI/",pattern = ".tif",full.names = T) 

v = paste(2023:2024, collapse = "|") 

filename2 = grep(v, filename1, value = T) 

 

• files_latlong specifies the path to the CSV file containing latitude and longitude data. 

• filename1 retrieves all TIFF files from the "LAI" directory. 

• filename2 filters these files to include only those from the years 2023 and 2024. 

 

j=1 

 

for(j in 1:length(files_latlong)){ 

  df_total = data.frame() 

  merge_data = data.frame() 

  ss<-fread(files_latlong[j],header=T,check.names=F,data.table = F) 

  x<-ss$lat 

  y<-ss$long 

  data<-data.frame(y,x) 

  latlon1<-CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 

+towgs84=0,0,0') 

  coordinates1 = SpatialPoints(data,latlon1) 

  sinus1 = CRS("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 

+b=6371007.181 +units=m +no_defs") 

  coordinates_sinus1 = spTransform(coordinates1,sinus1) 

  df_total<-NULL 

 

• df_total and merge_data are initialized as empty data frames for storing results. 

• Latitude and longitude data are read using fread and converted into a spatial object. 

• Coordinate reference systems are defined and used to transform the spatial coordinates. 

   

  for(i in 1:length(filename2)) 

  { 

    my<-raster(filename2[i]) 

    my<-stack(my) 

    dd <- extract(my, coordinates1) 

    tempf = which(is.na(dd)) 
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    if(length(tempf) != nrow(dd)) 

    { 

      df_total <- rbind(df_total, dd) 

    } 

  } 

  df_total = as.matrix(df_total) 

  df_total=df_total*0.1 

  df_total =as.data.frame(df_total) 

  col_names= gsub("\\.","-",colnames(df_total)) 

  df_total=setNames(df_total,substr(col_names,8,17)) 

  merge_data<-cbind(ss,df_total) 

  f_name=paste(beg2char(files_latlong[j],".",2),"_LAI_2023.csv",sep="") 

  fwrite(merge_data,f_name,col.names = T,row.names = F,sep=",")} 

 

• Each TIFF file is processed to extract raster values at the specified spatial coordinates. 

• Missing values are handled, and the extracted data is normalized and converted to a data 

frame. 

• Column names are adjusted, and the results are merged with the original latitude and 

longitude data. 

• The merged data is saved to a CSV file with a name based on the original file. 
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VII. Code for Converting Extracted Data from CRU (NetCDF Format) to CSV Format 

 

Start by going to the Climatic Research Unit’s (CRU) data portal using a web browser. Look for 

the section labelled "Climate Data." Once there, pick the desired dataset, such as temperature, 

precipitation, or humidity. Each dataset comes with a description that explains its coverage, resolution, 

and variables. Read the documentation to understand the data format, variable names, and any 

preprocessing that was done. Follow the steps shown in the accompanying image for a visual guide. Go 

to the download page and select the NetCDF file format, which works well with many analysis tools. 

Choose the time period and area needed, then download the .nc file, ensuring there is enough storage 

space and a good internet connection. After downloading, check the file size to ensure its correct, and 

unpack it if compressed using tools like tar or unzip. Open the NetCDF file in preferred software, such as 

R. Examine the data structure, including dimensions, variables, and attributes. Perform any necessary 

preprocessing, like masking, interpolation, or aggregation, to fit the data to specific research needs. By 

following these steps, it is easy to download and use climate data from the CRU website for analysis, 

aiding in a better understanding of climate patterns. 
 

 

 

 

 

After obtaining the NetCDF files, use the following R code to convert them to csv format for easier data 

handling and analysis.  

 

#Load the necessary package 

library(ncdf4) 

library(raster) 

library(data.table) 

library(qdap) 

#install.packages("qdap") 

library(sqldf) 

Fig. 10.4. Data extraction processes from CRU (NetCDF format data) 
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library(reshape) 

 

These libraries are loaded to manage NetCDF files, manipulate raster data, handle data tables, perform 

string operations, and reshape data. 

 

 

# Define file paths for NetCDF files  

files_nc <- list.files( path = "C:\\Users\\ICAR 

Bangalore\\Desktop\\Aj\\Weather Data\\NOAA (Ncep-Ncar)\\Precipitable 

water\\", pattern = "*.nc$", full.names = TRUE, recursive = TRUE ) 

# Define file paths for CSV files containing latitude and longitude  

 

files <- "India_Dist_2021_new.csv"  

# Define parameters for the data  

 

pars <- c("Precipitable water") 

 

• files_nc lists all NetCDF files in the specified directory. 

• files specifies the path to the CSV file containing latitude and longitude data. 

• pars defines the parameters being processed, in this case, "Precipitable water". 

 

m <- 1 

k <- 1 

 

for (m in 1:length(files_nc)) { 

for (k in 1:length(files)) { 

 

# Read latitude and longitude data from CSV 

 

ss1 <- read.csv(files[k], sep = ",", header = TRUE) 

    lg_lt1 <- cbind(ss1$long, ss1$lat) 

    latlon1 <- CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 

+towgs84=0,0,0') 

    coordinates1 <- SpatialPoints(lg_lt1, latlon1) 

    sinus1 <- CRS("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 

+b=6371007.181 +units=m +no_defs") 

    coordinates_sinus1 <- spTransform(coordinates1, sinus1) 

     

    # Load NetCDF file and get number of bands 

    banddata <- raster(files_nc[m+1]) 

    z <- nbands(banddata) 

     

    # Initialize data frame to store results 

    df_total <- data.frame(c(1:(nrow(ss1) + 1)), stringsAsFactors = FALSE) 
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    for (i in 1:z) { 

      # Extract raster data for each band 

      mydata <- raster(files_nc[m], i) 

      crs(mydata) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 

+towgs84=0,0,0" 

      ff <- extract(mydata, coordinates_sinus1) 

       

      # Extract and format date information 

      dd <- substr(getZ(mydata), 1, 7) 

   ff <- c(as.character(dd), ff) 

   df_total <- cbind(df_total, ff) 

   gc()  # Clean up memory 

    } 

     

    # Prepare final data frame for export 

    df_total <- df_total[, 2:ncol(df_total)] 

  colnames(df_total) <- as.character(unlist(df_total[1, ])) 

  final_df <- cbind(ss1, df_total[2:nrow(df_total), ]) 

     

    # Generate filename for output 

 

filename <- paste0(beg2char(files[k], "."), "_", pars[m], "Precipitable 

water_india 1979-2024.csv") 

print(filename) 

     

# Write final data to CSV 

fwrite(final_df, filename, row.names = FALSE, col.names = TRUE, sep = 

",") 

  } 

} 

 

• Latitude and longitude data are read from the CSV and converted to spatial points. 

• Each NetCDF file is processed to extract raster data for all bands. 

• The extracted data is combined with the latitude and longitude data into a final data frame. 

• The final data frame is saved to a CSV file, with a name based on the parameter and input file. 
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Step 2: Dimensionality Reduction of Risk Variables Using Principal Component 

Analysis (PCA) 

 
Apply Principal Component Analysis (PCA) to reduce dimensionality, retaining essential weather 

patterns and relationships. This process helps identify impactful weather variables efficiently for risk 

assessment.  

 

# Load Required Libraries 

library(stats)  # Provides functions for statistical calculations 

including PCA 

library(dplyr)  # Used for data manipulation 

 

These libraries are loaded to utilize statistical functions and data manipulation capabilities in R. 

 

# Read the NADRES parameters file 

mydata <- read.csv("Inputfile.csv") 

 

# Extract column names of specific components (columns 18 to end) 

c_names <- colnames(mydata[18:ncol(mydata)]) 

 

# Extract specific components for PCA analysis 

mydata_pca <- mydata[, c(18:ncol(mydata))] 

 

# Extract non-PCA components (columns 1 to 17) 

mydata2 <- mydata[, c(1:17)] 

 

 

• mydata contains the dataset with NADRES parameters. 

• c_names captures the names of the PCA components. 

• mydata_pca isolates the columns used for PCA. 

• mydata2 contains other relevant variables excluding the PCA components. 

 

 

# Convert Soil moisture values to millimeters by multiplying by 86400 

mydata_pca$Soil_moisture <- mydata_pca$Soil_moisture * 86400 

 

# Define a function to replace zero values with a small non-zero value (0.0001) 

replace_zeros <- function(x) { 

  ifelse(x == 0, 0.0001, x) 

} 

 

# Apply the function to each column of the dataset 

mydata_pca <- lapply(mydata_pca, replace_zeros) 
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# Convert the list back to a data frame 

mydata_pca <- as.data.frame(mydata_pca) 

 

• Soil moisture values are scaled to millimeters. 

• replace_zeros function ensures no zero values are present in the dataset, substituting them 

with a minimal value (0.0001). 

• The function is applied to all columns of mydata_pca, and the result is converted back to a 

data frame. 

 

# Perform PCA on the dataset  

pca_mydata <- princomp(mydata_pca)  

 

# Display number of observations  

pca_mydata$n.obs  

 

# Display PCA scores  

pca_mydata$scores 

 

• princomp function performs PCA on the mydata_pca dataset. 

• The number of observations and PCA scores are accessed for analysis. 

 

# Combine PCA scores with the other variables  

pca_results <- cbind(mydata2, pca_mydata$scores)  

 

# Rename columns of PCA components  

colnames(pca_results)[18:ncol(pca_results)] <- c_names 

 

• PCA scores are combined with non-PCA variables from mydata2. 

• Column names for the PCA components are updated to match c_names. 

 

# Write the PCA results to a new CSV file  

write.csv(pca_results, "PCAappliedfile.csv") 

 

The combined dataset with PCA results is saved to a CSV file for further use. 
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Step-3: Modelling Approaches (Risk Prediction) 

 

Part 1:  Analysis, forecasted results and disease maps at the state level 

 
In this step, Data on risk factors and disease incidences were systematically integrated from 

a comprehensive database. After merging these datasets, 16 distinct machine learning algorithms 

were applied for predictive modelling. The accuracy of these models was rigorously evaluated using 

ten different validation techniques, ensuring robust assessment. The results were meticulously 

documented in an Excel spreadsheet, categorized by state for clarity and ease of interpretation. 

Furthermore, geospatial maps were created to visualize the predictive outcomes across states, 

enhancing data interpretability and enabling more precise state-level disease risk predictions. This 

methodological approach significantly improves the accuracy and reliability of the predictions. 

 

 

#"C:\Program Files\R\R-3.3.3\bin\Rscript" nadres_final_mod.R 2018 2008 7 

 

This line indicates how to run the R script nadres_final_mod.R from the command line, with 

arguments specifying the forecast month and range of years. 

 

month_number= forecasting for which month(number example: 01 or 02 or 04 

or 06) ; year_number=2015 (from which year considering data ); 

current_year=2024 (upto which year you are going to forecast); 

 

# First, you must specify which month you are forecasting using how many years' worth of data 

(year_number to Current_year). 

 

 

nadres_func=function(current_year,year_number,month_number) 

 

Defines a function nadres_func that takes three parameters: current_year, year_number, and 

month_number. This function handles data processing and forecasting tasks. 

 

print(current_year) 

print(year_number) 

print(month_number) 

 

library(RMySQL) 

library(rgdal) 

library(RColorBrewer) 

library(sqldf) 

library(data.table)   

library(reshape2) 

library(imputeMissings) 

require(sp) 

require(spdep) 
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require(rms)  

library(xlsx) 

library(plyr) 

library(dplyr) 

library(randomForest) 

library(dismo) 

library(psych) 

library(pROC) 

library(SDMTools) 

library(BIOMOD) 

library(ROCR) 

library(caret) 

library(MLmetrics) 

 

Loads various libraries required for data manipulation, spatial analysis, machine learning, and 

performance metrics. 

 

##Database Connection and Data Import 

 

df_total<-NULL 

mydb = dbConnect(MySQL(), user="base user id", password='Password', 

dbname='databasename', host='hostid') 

month_name=data.frame( 

month=c(1:12), 

month_names=c("January","February","March","April","May","June","July","A

ugust","September","October","November","December") 

) 

 

Connects to a MySQL database and imports data from a CSV file. month_name data frame maps 

month numbers to names. 

 

##Data Preparation 

ss_final<-fread(file="PCAappliedInputfile.csv",header=T,check.names = F) 

ss=ss_final[ss_final$month==month_number,] 

 

#write.csv(ss,"ss_dec_data.csv") 

ss_lag=ss_final[ss_final$month==month_number-1,] 

colnames(ss_lag)[18:63]=paste0(colnames(ss_lag)[18:63],"_lag") 

ss=cbind(ss,ss_lag[,18:63]) 

names(ss) 

col_pars=names(ss) 

vars= paste(col_pars[7:ncol(ss)],collapse = "+") 

vars=paste0(vars,"+rating") 

options(verbose = F) 
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Filters data for the current month and the previous month, then combines them. Lag variables are 

created by appending suffixes to column names. 

 

 

## Database Query and Fetching Data 

rs<-dbSendQuery(mydb,"SELECT 

state.state_name,state.state_id,district.district_id, 

district.district_name, dval_ob_district_final.year_id, 

dval_ob_final.month_id,species.species_name, disease.disease_id, 

disease.disease_name, dval_ob_district_final.number_outbreak, 

dval_ob_district_final.number_susceptible,   

dval_ob_district_final.number_attack, dval_ob_district_final.number_death 

FROM dval_ob_district_final 

INNER JOIN  state on state.state_id=dval_ob_district_final.state_id 

INNER JOIN  district on 

district.district_id=dval_ob_district_final.district_id 

INNER JOIN  disease on    

disease.disease_id=dval_ob_district_final.disease_id 

INNER JOIN species on 

species.species_id=dval_ob_district_final.species_id") 

data1 = fetch(rs, n=-1) 

 

colnames(data1)=c("state_name","state_id","district_id","district_name","

year","month","species_name","disease_id","disease_name",                

"number_of_outbreaks","number_susceptible","number_of_attacks","number_of

_deaths") 

 

Sends a SQL query to fetch disease-related data from the database and stores it in data1. 

 

 

## Import or read shapefile 

k1=readOGR("shapefile") 

k1@data 

names(k1)[1]<-"DISTRICT" 

names(k1)[2]<-"ST_NM" 

names(k1)[3]<-"ST_CEN_CD" 

names(k1)[4]<-"DT_CEN_CD" 

ll_coord=data.frame(coordinates(k1)) 

final_eval=NULL 

 

Reads a shapefile for spatial data of districts and states in India 

 

##write disease data file to external folder for further analysis 

fwrite(data1,paste0("dist_out_nadres_",gsub("\\:","_",Sys.time()),".csv")

) 
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## determine diseases / assign ID to the unique disease, and then determine the diseases you want to 

analyze. 

for(disease in c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189))  

# The livestock diseases are arranged alphabetically, and IDs are 

assigned to them in the database. 

 

{  

  k=k1 

  rat_df=c(1:nrow(k))   

  df=data1 

   

This loop iterates over a predefined list of disease IDs. For each disease, it sets up the necessary 

variables and prepares to process the data related to that disease. 

 

if(disease==12) 

{ 

d1=df[df$year>=1987 & df$year<=current_year & df$disease_id==disease & 

df$month==month_number,] 

  } else  d1=df[df$year>=year_number & df$year<=current_year & 

df$disease_id==disease & df$month==month_number,] 

d2=d1[,c("state_name","district_name","disease_name","month","year")] 

 

Filters the df data frame to include records for the current disease, within the specified year and 

month range. The filtered data is used for further analysis. 

 

## assigning rating to the years to remove noise  

yr_rt=data.frame(year=c(year_number:current_year),rating=c(1:10)) 

st_dt=data.frame(k@data[,c("ST_NM","DISTRICT")]) 

d2$state_name=toupper(d2$state_name) 

st_dt$rating=0 

for (i in 1:nrow(st_dt)) { 

  

rt=yr_rt[yr_rt$year==max(d2[which(d2$state_name==as.character(st_dt[i,"ST

_NM"]) &  

                                        

d2$district_name==as.character(st_dt[i,"DISTRICT"])),"year"]),"rating"] 

    if(sum(rt)!=0) 

      st_dt[i,"rating"]=rt 

  } 

rat_df=cbind(rat_df,st_dt) 

colnames(rat_df)[c(2,3)]=c("state_name","district_name") 

 

   

Assigns ratings to each year to minimize noise in the data. Ratings are used to evaluate the 

relevance of the data based on the most recent year of data available. 
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data<-subset(data1,data1$year>=year_number & data1$disease_id==disease) 

df<-sqldf("SELECT 

state_id,state_name,district_id,district_name,disease_id,disease_name,mon

th,sum(number_of_outbreaks)as outbreak FROM data GROUP BY 

state_id,district_id,state_name,district_name,month,disease_id,disease_na

me",drv="SQLite") 

ss1<-subset(ss,ss$disease_id==disease) 

 

Aggregates the data by summing up the number of outbreaks for each state, district, and month. 

This step ensures that data is compiled in a format suitable for analysis. 
   

dd<-merge(ss1, df, by =   

c("state_id","district_id","disease_id","month"),all.x=TRUE) 

attach(dd,warn.conflicts = F) 

out<-data.frame(outbreak) 

out<-ifelse(outbreak>=1,1,0) 

out[is.na(out)]<-0 

final<-cbind(dd,out) 

 

Merges the PCA-applied data (ss1) with aggregated disease data (df). Creates a binary outcome 

variable out based on whether outbreaks occurred or not, and prepares the final dataset for modelling. 
 

final1<-final[which(final$disease_id==disease & 

final$month==month_number),] 

cat("For disease: ",as.character(unique(ss1[,"disease_name"])),"\n") 

ncs= ncol(final1)-5 

temp = data.frame(final1[,8:ncs]) 

for(i in 1:ncol(temp)){ 

temp[is.na(temp[,i]), i] <- mean(temp[,i], na.rm = TRUE) 

  } 

   

Selects the relevant rows for the current disease and month, and handles missing values in the data 

by replacing them with column means. 

 

final2<-

cbind(final1$state_id,final1$state_name.x,final1$district_id,final1$distr

ict_name.x,final1$disease_id,final1$disease_name.x,final1$out,final1$mont

h,temp) 

setnames(final2,old=c("final1$state_id","final1$state_name.x","final1$dis

trict_id","final1$district_name.x","final1$disease_id","final1$disease_na

me.x","final1$out","final1$month"),new=c("state_id","state_name","distric

t_id","district_name","disease_id","disease_name","out","month")) 

final2=join(data.frame(final2),rat_df,match="full",type="left") 

formula=paste("out ~",vars) 

formula=as.formula(formula) 
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final2[is.na(final2$rating),"rating"]=0 

 

Constructs the final dataset final2 by combining various columns and ensuring proper naming. Also 

joins with the rating data and prepares the formula for modeling. 

   

kappa=roc=tss=array() 

sensitivity<- numeric(1) 

specificity<- numeric(1) 

precision <- numeric(1) 

recall <- numeric(1) 

f1_score <- numeric(1) 

mcc <- numeric(1) 

accuracy <- numeric(1) 

error_rate <- numeric(1) 

model<-glm(formula,data = final2, family 

=binomial(link="logit"),maxit=20) 

prediction_glm<-predict(model,type="response") 

tmp_df=cbind(final2,prediction_glm) 

glkappa<-cohen.kappa(data.frame(final2$out,prediction_glm)) 

kappa[1]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,prediction_glm) 

roc[1]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,prediction_glm) 

max_thres=max(glvv[[8]]) 

glxx<-confusion.matrix(final2$out,prediction_glm,max_thres) 

tss[1]<-round(TSS.Stat(glxx),3) 

binary_predictions <- ifelse(prediction_glm > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[1] <- TP / (TP + FN) 

specificity[1] <- TN / (TN + FP) 

precision[1] <- TP / (TP + FP) 

f1_score[1] <- 2 * (precision * sensitivity) / (precision +sensitivity) 

mcc[1] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP)  * 

(TN + FN)) 

accuracy[1] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[1] <- 1 - accuracy 

   

Fits a generalized linear model (GLM) using logistic regression. Evaluates the model's performance 

by calculating various metrics such as kappa, ROC AUC, TSS, sensitivity, specificity, precision, 

recall, F1 score, MCC, accuracy, and error rate. 

 

 



44 
 

# library(randomForest) 

n2 <- randomForest(as.formula(formula), data = final2, ntree = 8000, mtry 

= 100, maxdepth = 900) 

prediction_rf<-predict(n2,type="response") 

tmp_df=cbind(final2, prediction_rf) 

glkappa<-cohen.kappa(data.frame(final2$out,prediction_rf)) 

kappa[2]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,prediction_rf) 

roc[2]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,prediction_rf) 

max_thres=max(glvv[[8]]) 

glxx<-confusion.matrix(final2$out,prediction_rf,max_thres) 

tss[2]<-round(TSS.Stat(glxx),3) 

binary_predictions <- ifelse(prediction_rf > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[2] <- TP / (TP + FN) 

specificity[2] <- TN / (TN + FP) 

precision[2] <- TP / (TP + FP) 

f1_score[2] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[2] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[2] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[2] <- 1 - accuracy[2] 

   

The code trains a Random Forest model with specified parameters and uses it to predict 

outcomes. It then integrates these predictions with the original dataset to evaluate model performance. 

Cohen’s Kappa is calculated to measure agreement between observed and predicted values, while 

ROC AUC assesses the model's classification performance. The optimal prediction threshold is 

determined, and the True Skill Statistic (TSS) is computed. Finally, various performance metrics, 

including sensitivity, specificity, precision, F1 score, Matthews Correlation Coefficient (MCC), 

accuracy, and error rate, are calculated to assess the model's overall effectiveness. 

 

library(mgcv) 

model_gam <- gam(formula, data = final2, family = binomial(link = 

"logit")) 

predicted_gam<- predict(model_gam, type = "response") 

tmp_df1=cbind(final2,predicted_gam) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_gam)) 

kappa[4]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_gam) 

roc[4]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_gam) 
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max_thres=max(glvv[[8]]) 

glgam<-confusion.matrix(final2$out,predicted_gam,max_thres) 

tss[4]<-round(TSS.Stat(glgam),3) 

binary_predictions <- ifelse(predicted_gam > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[4] <- TP / (TP + FN) 

specificity[4] <- TN / (TN + FP) 

precision[4] <- TP / (TP + FP) 

f1_score[4] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[4] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[4] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[4] <- 1 - accuracy[4] 

 

The code trains a Generalized Additive Model (GAM) with a logistic link function using 

the mgcv package and makes predictions based on this model. It combines the predictions with the 

original dataset for further evaluation. Cohen’s Kappa is computed to measure agreement between 

the observed and predicted values, while ROC AUC evaluates the model's performance. The optimal 

prediction threshold is identified, and the True Skill Statistic (TSS) is calculated. Performance metrics 

such as sensitivity, specificity, precision, F1 score, Matthews Correlation Coefficient (MCC), 

accuracy, and error rate are then calculated to assess the model's effectiveness. 

   

  

##install.packages("earth") 

library(earth) 

mars_model <- earth(formula, data = final2) 

predicted_mars <- predict(mars_model, newdata = final2) 

tmp_df2=cbind(final2,predicted_mars) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_mars)) 

kappa[5]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_mars) 

roc[5]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_mars) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_mars,max_thres) 

tss[5]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_mars > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 
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sensitivity[5] <- TP / (TP + FN) 

specificity[5] <- TN / (TN + FP) 

precision[5] <- TP / (TP + FP) 

f1_score[5] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[5] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[5] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[5] <- 1 - accuracy[5] 

   

The MARS model was applied to predict binary outcomes based on the features in the 

final2 dataset. It uses a non-parametric approach to model complex, nonlinear relationships. After 

training the model, predictions were generated, and performance was evaluated using metrics such as 

Cohen's kappa, ROC AUC, and confusion matrix statistics. The model's effectiveness was quantified 

through various metrics, including sensitivity, specificity, and F1 score, revealing its ability to handle 

non-linearities in the data. 

     

#install.packages("cubist) 

library(Cubist) 

param_grid <- expand.grid(committees = c(3, 7, 15), neighbors = c(5, 6, 

7)) 

cubist_grid <- train( x = final2[, -c(1:7)],  # Features 

y = final2$out,         # Response variable 

method = "cubist",      # Cubist method 

trControl = trainControl(method = "cv", number = 5),  # 5-fold cross-

validation 

      tuneGrid = param_grid   # Parameter grid 

    ) 

predicted_cubist <- predict(cubist_grid, newdata = final2, method = 

"response") 

tmp_df2=cbind(final2,predicted_cubist) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_cubist)) 

kappa[5]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_cubist) 

roc[5]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_cubist) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_cubist,max_thres) 

tss[5]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_cubist > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[5] <- TP / (TP + FN) 

specificity[5] <- TN / (TN + FP) 
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precision[5] <- TP / (TP + FP) 

f1_score[5] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[5] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[5] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[5] <- 1 - accuracy[5] 

   

The Cubist model, a rule-based approach that combines regression trees with instance-

based learning, was used to model the binary outcome variable. Hyperparameter tuning was 

performed through a grid search, optimizing the number of committees and neighbors. Performance 

metrics, including Cohen's kappa and ROC AUC, were calculated to assess the model's predictive 

accuracy. The confusion matrix was used to derive additional performance metrics such as sensitivity, 

specificity, and F1 score, providing insights into the model's classification effectiveness. 

   

#install.packages("xgboost") 

library(xgboost) 

X <- as.matrix(final2[, -(1:7)])  # Predictor variables 

y <- final2[, "out"]              # Response variable 

params <- list( 

booster = "gbtree",               # Tree-based model 

objective = "binary:logistic",    # Binary classification 

max_depth = 6,                    # Maximum tree depth 

eta = 0.3,                        # Learning rate 

nrounds = 20         # Number of boosting rounds (similar to maxit) 

  ) 

xgb_model <- xgboost(data = X, label = y, params = params, nrounds = 

params$nrounds) 

predicted_xgb <- predict(xgb_model, X) 

tmp_df3=cbind(final2,predicted_xgb) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_xgb)) 

kappa[6]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_xgb) 

roc[6]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_xgb) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_xgb,max_thres) 

tss[6]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_xgb > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[6] <- TP / (TP + FN) 

specificity[6] <- TN / (TN + FP) 

precision[6] <- TP / (TP + FP) 
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f1_score[6] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[6] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[6] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[6] <- 1 - accuracy[6] 

   

The XGBoost model, known for its gradient boosting capabilities, was used for binary 

classification. The model was configured with parameters suited for boosting, such as learning rate 

and maximum tree depth. Predictions were made, and performance metrics including Cohen's kappa, 

ROC AUC, and confusion matrix statistics were computed. The model's predictive power was 

evaluated using accuracy, sensitivity, and other performance measures, highlighting its effectiveness 

in handling large datasets and complex patterns. 

 

library(e1071) 

svm_model <- svm(formula, data = final2, kernel = "radial", cost = 1)   

# Adjust kernel and cost as needed 

predicted_svm <- predict(svm_model, final2, type = "response") 

tmp_df4=cbind(final2,predicted_svm) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_svm)) 

kappa[7]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_svm) 

roc[7]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_svm) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_svm,max_thres) 

tss[7]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_svm > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[7] <- TP / (TP + FN) 

specificity[7] <- TN / (TN + FP) 

precision[7] <- TP / (TP + FP) 

f1_score[7] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[7] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[7] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[7] <- 1 - accuracy[7] 

     

An SVM model with a radial basis function kernel was applied to classify the binary 

outcome. The model was trained with specific cost parameters to balance margin and error. 

Predictions were evaluated using Cohen's kappa, ROC AUC, and other classification metrics. The 

confusion matrix provided detailed insights into the model's sensitivity, specificity, precision, and F1 

score, demonstrating its capability in separating classes in high-dimensional space. 
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library(rpart) 

tree_model <- rpart(formula, data = final2, method = "class") 

predicted_tree_prob <- predict(tree_model, final2, type = "prob")[, "1"] 

tmp_df5=cbind(final2,predicted_tree_prob) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_tree_prob)) 

kappa[8]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_tree_prob) 

roc[8]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_tree_prob) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_tree_prob,max_thres) 

tss[8]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_tree_prob > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[8] <- TP / (TP + FN) 

specificity[8] <- TN / (TN + FP) 

precision[8] <- TP / (TP + FP) 

f1_score[8] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[8] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[8] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[8] <- 1 - accuracy[8] 

   

The decision tree model, implemented with the rpart package, was used to predict the 

binary outcome variable. This model generates a tree-like structure to make decisions based on feature 

values. Predictions were assessed using Cohen's kappa, ROC AUC, and confusion matrix metrics. 

Performance evaluation included sensitivity, specificity, and accuracy measures, illustrating the 

model's effectiveness in capturing decision rules from the data. 

 

 

library(glmnet) 

X <- as.matrix(final2[, -(1:7)])  # Predictor variables 

y <- final2[, "out"]  # Response variable 

lasso_cv <- cv.glmnet(X, y, alpha = 1) 

optimal_lambda <- lasso_cv$lambda.min 

lasso_model <- glmnet(X, y, alpha = 0, lambda = optimal_lambda) 

predicted_lasso <- predict(lasso_model, newx = X) 

final2$predicted_lasso <- predicted_lasso 

tmp_df6=cbind(final2,predicted_lasso) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_lasso)) 

kappa[9]<-round(glkappa[[2]],3) 
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glroc<-roc(final2$out,predicted_lasso) 

roc[9]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_lasso) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_lasso,max_thres) 

tss[9]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_lasso > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[9] <- TP / (TP + FN) 

specificity[9] <- TN / (TN + FP) 

precision[9] <- TP / (TP + FP) 

f1_score[9] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[9] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[9] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[9] <- 1 - accuracy[9] 

   

The Lasso regression model, implemented using glmnet, was used for feature selection and 

prediction in binary classification. By applying L1 regularization, the model penalizes less important 

features, enhancing model interpretability. Predictions were evaluated with metrics such as Cohen's 

kappa, ROC AUC, and confusion matrix statistics. The model's performance in terms of accuracy, 

sensitivity, and F1 score was assessed, demonstrating its ability to handle high-dimensional data and 

perform feature selection. 

 

#install.packages("fda") 

library(fda) 

fda_model <- lm(formula, data = final2) 

predicted_fda <- predict(fda_model) 

final2$predicted_fda <- predicted_fda 

tmp_df8=cbind(final2,predicted_fda) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_fda)) 

kappa[10]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_fda) 

roc[10]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_fda) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_fda,max_thres) 

tss[10]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_fda > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 



51 
 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[10] <- TP / (TP + FN) 

specificity[10] <- TN / (TN + FP) 

precision[10] <- TP / (TP + FP) 

f1_score[10] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[10] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[10] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate <- 1 - accuracy[10] 

 

The Functional Data Analysis (FDA) model was applied to analyze and predict binary 

outcomes based on functional data. This approach fits a model using functional data representation, 

which is suitable for capturing complex patterns over a continuum. By predicting outcomes based on 

these functional features, the model enhances interpretability and handles data variability effectively. 

Model performance was evaluated using Cohen's kappa, ROC AUC, and confusion matrix metrics, 

assessing its accuracy, sensitivity, and overall predictive capability. 

 

library(caret) 

probit_model <- train(formula, data = final2, method = "glm", family = 

binomial(link = "probit")) 

predicted_probit = predict(probit_model) 

final2$predicted_probit <- predicted_probit 

tmp_df8=cbind(final2,predicted_probit) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_probit)) 

kappa[10]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_probit) 

roc[10]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_probit) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_probit,max_thres) 

tss[10]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_probit > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[10] <- TP / (TP + FN) 

specificity[10] <- TN / (TN + FP) 

precision[10] <- TP / (TP + FP) 

f1_score[10] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[10] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[10] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate <- 1 - accuracy[10] 
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The Probit regression model was utilized for binary classification by estimating 

probabilities using a cumulative normal distribution. This model addresses non-linear relationships 

between predictors and binary outcomes. Its performance was evaluated through Cohen's kappa, ROC 

AUC, and confusion matrix, highlighting its accuracy, sensitivity, and ability to manage classification 

tasks effectively. 

     

  

library(kernlab) 

gp_model <- gausspr(formula, data = final2) 

predicted_gp <- predict(gp_model, newdata = final2) 

gp_model <- gausspr(formula, data = final2, kernel = "rbfdot", kpar = 

list(sigma = 0.1), cost = 1) 

predicted_gp <- predict(gp_model, newdata = final2) 

tmp_df9=cbind(final2,predicted_gp) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_gp)) 

kappa[11]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_gp) 

roc[11]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_gp) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_gp,max_thres) 

tss[11]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_gp > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[11] <- TP / (TP + FN) 

specificity[11] <- TN / (TN + FP) 

precision[11] <- TP / (TP + FP) 

f1_score[11] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[11] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[11] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[11] <- 1 - accuracy[11] 

 

The Gaussian Process (GP) model was employed to predict binary outcomes by leveraging 

a distribution over functions. This model is advantageous for handling complex, non-linear 

relationships in high-dimensional data. Performance metrics such as Cohen's kappa, ROC AUC, and 

confusion matrix were used to evaluate the model's accuracy, sensitivity, and classification 

effectiveness. 
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#install.packages("neuralnet") 

library(neuralnet) 

nn_model <- neuralnet(formula, data = final2, hidden = c(5, 2), 

linear.output = FALSE) 

predicted_nn <- predict(nn_model, final2) 

tmp_df10=cbind(final2,predicted_nn) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_nn)) 

kappa[12]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_nn) 

roc[12]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_nn) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_nn,max_thres) 

tss[12]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_nn > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[12] <- TP / (TP + FN) 

specificity[12] <- TN / (TN + FP) 

precision[12] <- TP / (TP + FP) 

f1_score[12] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[12] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[12] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[12] <- 1 - accuracy[12] 

 

The Neural Networks (NN) model was employed for binary classification by learning 

complex patterns through interconnected layers. This model can capture non-linear relationships 

effectively. Performance was measured using Cohen's kappa, ROC AUC, and confusion matrix 

metrics, which assessed the model's accuracy, sensitivity, and overall classification performance. 

 

library(nnet) 

multinom_model <- multinom(formula, data = final2) 

predicted_multinom_probs <- predict(multinom_model, final2, type = 

"probs") 

final2$predicted_multinom_probs <- predicted_multinom_probs 

tmp_df11=cbind(final2,predicted_multinom_probs) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_multinom_probs)) 

kappa[13]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_multinom_probs) 

roc[13]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_multinom_probs) 

max_thres=max(glvv[[8]]) 
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glmars<-confusion.matrix(final2$out,predicted_multinom_probs,max_thres) 

tss[13]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_multinom_probs > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[13] <- TP / (TP + FN) 

specificity[13] <- TN / (TN + FP) 

precision[13] <- TP / (TP + FP) 

f1_score[13] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[13] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[13] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[13] <- 1 - accuracy[13] 

 

The Multinomial Regression model was used to predict outcomes with more than two 

categories by estimating probabilities for each category. This model extends logistic regression to 

handle multi-class classification problems. Performance evaluation through Cohen's kappa, ROC 

AUC, and confusion matrix provided insights into the model's accuracy, sensitivity, and 

classification performance for multi-class data. 

     

library(kernlab) 

ksvm_model <- ksvm(formula, data = final2, type = "C-svc", kernel = 

"rbfdot") 

predicted_ksvm <- predict(ksvm_model, final2) 

tmp_df13=cbind(final2,predicted_ksvm) 

glkappa<-cohen.kappa(data.frame(final2$out,predicted_ksvm)) 

kappa[14]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,predicted_ksvm) 

roc[14]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,predicted_ksvm) 

max_thres=max(glvv[[8]]) 

glmars<-confusion.matrix(final2$out,predicted_ksvm,max_thres) 

tss[14]<-round(TSS.Stat(glmars),3) 

binary_predictions <- ifelse(predicted_ksvm > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[14] <- TP / (TP + FN) 

specificity[14] <- TN / (TN + FP) 

precision[14] <- TP / (TP + FP) 

f1_score[14] <- 2 * (precision * sensitivity) / (precision + sensitivity) 
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mcc[14] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[14] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[14] <- 1 - accuracy[14] 

 

The k-SVM model was applied for binary classification by utilizing kernel functions to 

map input features into a higher-dimensional space. This model is effective for handling non-linearly 

separable data. Performance was assessed using Cohen's kappa, ROC AUC, and confusion matrix 

metrics, highlighting the model's accuracy, sensitivity, and classification capabilities. 

    

if(disease_id!=12) 

{ 

gbm_model=gbm.step(data=final2, gbm.x = 8:grep("PET",names(final2)), 

gbm.y = 7, family = "bernoulli", tree.complexity = 1, learning.rate = 

0.01, 

bag.fraction = 0.65, n.trees = 5,keep.fold.fit=T,tolerance.method="fixed" 

, step.size = 5,n.folds = 10) 

prediction_gbm<-

predict(gbm_model,n.trees=gbm_model$gbm.call$best.trees,type="response") 

glkappa<-cohen.kappa(data.frame(final2$out,prediction_gbm)) 

kappa[3]<-round(glkappa[[2]],3) 

glroc<-roc(final2$out,prediction_gbm) 

roc[3]<-round(as.numeric(glroc$auc),3) 

glvv<-optim.thresh(final2$out,prediction_gbm) 

max_thres=max(glvv[[8]]) 

glxx<-confusion.matrix(final2$out,prediction_gbm,max_thres) 

tss[3]<-round(TSS.Stat(glxx),3) 

binary_predictions <- ifelse(prediction_gbm > 0.5, 1, 0) 

conf_matrix <- table(final2$out, binary_predictions) 

TP <- sum(binary_predictions == 1 & final2$out == 1) 

TN <- sum(binary_predictions == 0 & final2$out == 0) 

FP <- sum(binary_predictions == 1 & final2$out == 0) 

FN <- sum(binary_predictions == 0 & final2$out == 1) 

sensitivity[3] <- TP / (TP + FN) 

specificity[3] <- TN / (TN + FP) 

precision[3] <- TP / (TP + FP) 

f1_score[3] <- 2 * (precision * sensitivity) / (precision + sensitivity) 

mcc[3] <- (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * 

(TN + FN)) 

accuracy[3] <- (TP + TN) / (TP + TN + FP + FN) 

error_rate[3] <- 1 - accuracy[3] 

     

  } 
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In this section of the code, a Gradient Boosting Machine (GBM) model is trained using the 

gbm.step function. The model is built with features from the dataset final2, excluding those with 

"PET" in their names, and the response variable is specified. Key parameters for the GBM model, 

including tree complexity, learning rate, and the number of trees, are set to control model complexity 

and training. Cross-validation with 10 folds is employed to optimize the model's performance, and 

predictions are generated using the best number of trees. Evaluation metrics such as Cohen’s Kappa, 

ROC AUC, True Skill Statistic (TSS), and other performance measures are then computed to assess 

the model’s accuracy and effectiveness in classifying outcomes. This process helps in understanding 

the model’s predictive power and its alignment with actual data. 

 

eval<-cbind(kappa, roc, tss, sensitivity, specificity, precision, 

f1_score, mcc, accuracy, error_rate) 

model_names = 

c("glm","rf","gam","mars","xgb","svm","tree_model","lasso_model","fda","g

p_model","nn_model","multinomial","ksvm","gbm") 

   

eval=data.frame(eval) 

eval$disease=as.character(unique(ss1[,"disease_name"])) 

eval <- cbind(eval, model_names) 

final_eval=rbind(final_eval,eval) 

# fname=paste(dir_name,"/",dir_name,"_evaluation.csv",sep="") 

# write.csv(final,fname) 

   

prediction=numeric() 

for (i in 1:length(prediction_glm)) {  

prediction[i]=min(prediction_glm[i],prediction_rf[i],prediction_gbm[i],pr

edicted_gam[i],predicted_mars[i],predicted_xgb[i] >= 0.5) 

      if ( 

      prediction_glm[i] >= 0.5 || 

      prediction_rf[i] >= 0.5 || 

      prediction_gbm[i] >= 0.5 || 

      predicted_gam[i] >= 0.5 || 

      predictedmars[i] >= 0.5 || 

      predicted_xgb[i] >= 0.5 || 

      predicted_svm[i] >= 0.5 || 

      predicted_tree_prob[i] >= 0.5 || 

      predicted_lasso[i] >= 0.5 || 

      predicted_fda[i] >= 0.5 || 

      predicted_gp[i] >= 0.5 || 

      predicted_nn[i] >= 0.5 || 

      predicted_multinom_probs[i] >= 0.5 || 

      predicted_ksvm[i] >= 0.5 

    ) { 

      prediction[i] = pmax( 

        prediction_glm[i], 

        prediction_rf[i], 
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        predictiongbm[i], 

        predicted_gam[i], 

        predicted_mars[i], 

        predicted_xgb[i], 

        predicted_svm[i], 

        predicted_tree_prob[i], 

        predicted_lasso[i], 

        predicted_fda[i], 

        predicted_gp[i], 

        predicted_nn[i], 

        predicted_multinom_probs[i], 

        predicted_ksvm[i] 

      ) 

    } else { 

      prediction[i] = pmin( 

        prediction_glm[i], 

        prediction_rf[i], 

        prediction_gbm[i], 

        predicted_gam[i], 

        predicted_mars[i], 

        predicted_xgb[i], 

        predicted_svm[i], 

        predicted_tree_prob[i], 

        predicted_lasso[i], 

        predicted_fda[i], 

        predicted_gp[i], 

        predicted_nn[i], 

        predicted_multinom_probs[i], 

        predicted_ksvm[i] 

      ) 

    } 

     

This code block combines predictions from multiple models. For each prediction, it 

evaluates the maximum or minimum prediction value among all models based on whether any 

model’s prediction exceeds 0.5. This approach helps in aggregating predictions from various models 

to potentially improve overall performance. 

     

# summary(prediction) 

  vv<-round(prediction,2) 

 

# names(final2) 

  df1<-cbind(final2,vv) 

  df_total<-rbind(df_total, df1) 

  gc() 

} 
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The above codes combine the original dataset (final2) with the newly computed predictions (vv). The 

combined data is appended to df_total, and garbage collection (gc()) is performed to free up memory. 

 

##define risk level by giving predicted values 

f=function(m){ 

  if(m<=0.0 | is.na(m)) i=1 

  else if(m>=0.1 && m<=0.19) i=2 

  else if(m>=0.20 && m<=0.40) i=3 

  else if(m>=0.41 && m<=0.60) i=4 

  else if(m>=0.61 && m<=0.80) i=5 

  else i=6 

} 

 

This function f assigns a risk category based on the predicted value m. The risk levels are defined as 

follows: 

1: No Risk (NR) if the value is 0.0 or NA. 

2: Very Low Risk (VLR) for values between 0.1 and 0.19. 

3: Low Risk (LR) for values between 0.20 and 0.40. 

4: Medium Risk (MR) for values between 0.41 and 0.60. 

5: High Risk (HR) for values between 0.61 and 0.80. 

6: Very High Risk (VHR) for values above 0.80. 

 

df_total$cate=factor(mapply(f,df_total$vv),levels=1:6,labels=c("NR","VLR"

,"LR","MR","HR","VHR")) 

fwrite(df_total,"outputfile.csv",row.names = F) 

 

The df_total dataset is updated with a new column cate, which represents the risk category for each 

prediction using the function f. The risk categories are converted to factors with appropriate labels. 

The updated dataset is then saved to a CSV file named "outputfile.csv". 

 

# # Function to get the highest category 

get_highest_category <- function(categories) { 

risk_levels <- c("VHR", "HR", "VLR", "MR", "LR", "NR") 

max_risk_level <- risk_levels[which.max(risk_levels %in% categories)] 

return(max_risk_level) 

} 

 

The code starts with a function named get_highest_category. This function is designed to 

identify the highest risk category from a list of categories. It operates by first defining a vector 

called risk_levels that contains the risk categories ordered from highest to lowest priority: "VHR" 

(Very High Risk), "HR" (High Risk), "VLR" (Very Low Risk), "MR" (Moderate Risk), "LR" (Low 

Risk), and "NR" (No Risk). The function then checks which of these risk levels are present in the 

input vector categories. Using which.max, it finds the index of the highest risk level in the 

predefined order and returns this level as the output. This function ensures that the most critical risk 

level is selected from the given categories. 
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# Group by state, district, and disease, and summarize to get the highest category for each group 

df_total <- df_total %>% 

group_by(state_id,state_name,district_id,district_name,disease_id, 

disease_name,month,out,cattle,buaffalo,goat,sheep,pig) %>% 

summarise(cate = get_highest_category(cate),vv=max(vv)) 

 

The code groups the data frame df_total by multiple columns and summarizes it by applying the 

get_highest_category function to determine the highest risk category (cate) and calculating the 

maximum value of the vv column for each group. 

 

write.csv(df_total,"filteredRisk.csv") 

 

This line saves the summarized data frame df_total to a CSV file named filteredRisk.csv for further 

use or sharing. 

 

#Results Import and Directory Creation 

df_total=fread("outputfile.csv",header=T,check.names=F,data.table = F) 

dir.create(path = paste(month_name[month_number,2],current_year)) 

df_poa=df_total 

df_poa$cate=factor(mapply(f,df_poa$vv),levels=1:6,labels=c(0,0,0,0,1,1)) 

df_poa=df_poa[which(df_poa$month==month_name[month_number,1]),] 

df_p=df_poa[,c("disease_name","out","cate")] 

df_poa_acc=sqldf("select df_p.disease_name,count(df_p.out) as 

Outbreak_count,count(df_p.cate) as Predicted_count,df_p.out,df_p.cate  

                 from df_p group by 

df_p.disease_name,df_p.out,df_p.cate") 

df_tp_tn=sqldf("select 

df_poa_acc.disease_name,sum(df_poa_acc.Outbreak_count) as Outbreak_count 

from df_poa_acc 

             where df_poa_acc.out=df_poa_acc.cate 

             group by df_poa_acc.disease_name") 

df_tot_res=sqldf("select 

df_poa_acc.disease_name,sum(df_poa_acc.Outbreak_count) as Total_count 

from df_poa_acc 

             group by df_poa_acc.disease_name") 

 

df_acc=cbind(data.frame(c(1:nrow(df_tot_res))),data.frame(df_tp_tn[,1]),(

df_tp_tn[,2]/df_tot_res[,2])*100) 

df_acc=setNames(df_acc,c("No","Disease","Accuracy")) 

dis_acc=paste(paste(month_name[month_number,2]," ",current_year,"/",sep = 

""),"Disease Accuracy ",month_name[month_number,2]," 

",current_year,".csv",sep="") 

write.csv(df_acc,dis_acc,row.names = F) 
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This section begins by importing the data from the outputfile.csv file into a data frame and 

creating a directory for the specified month and year. The data is then processed to convert vv values 

into binary categories using a custom function. The script filters the data for the current month and 

calculates the accuracy of predictions by comparing predicted categories to actual outcomes. The 

results are aggregated and saved to a CSV file named with the current month and year. 

 

# Risk Count Calculation and Transformation 

qry=sprintf("select 

df_total.state_name,df_total.disease_name,count(df_total.cate) as 

Risk_count from df_total where df_total.cate in('VHR','HR') and 

month='%s' group by 

df_total.state_name,df_total.disease_name",month_number) 

df_qr=sqldf(qry) 

df_cast_risk=dcast(df_qr,state_name~disease_name,value.var = 

"Risk_count") 

df_cast_risk=df_cast_risk[,!(names(df_cast_risk) %in% drops)] 

df_colmean <- data.frame("Total_Disease_District_Predicted", 

t(colSums(as.data.frame(df_cast_risk[, 2:ncol(df_cast_risk)]), na.rm = 

TRUE))) 

df_rowmean=data.frame(as.integer(rowSums(df_cast_risk[2:ncol(df_cast_risk

)],na.rm = T))) 

df_rowmean=setNames(df_rowmean,"Total_Outbreaks_predicted") 

sum_all <- as.integer(sum(colSums(as.data.frame(df_cast_risk[, 

2:ncol(df_cast_risk)]), na.rm = TRUE))) 

df_cast_risk2=cbind(df_cast_risk,df_rowmean) 

df_colmean=cbind(df_colmean,sum_all) 

df_colmean= setNames(df_colmean,names(df_cast_risk2)) 

df_cast_risk2=rbind(df_cast_risk2,df_colmean) 

risk_fname=paste(paste(month_name[month_number,2]," 

",current_year,"/",sep = ""),"Risk Count StateWise 

",month_name[month_number,2]," ",current_year,".csv",sep="") 

write.csv(df_cast_risk2,risk_fname,row.names = F,na = "0") 

 

This part of the code calculates the count of high-risk categories ("VHR" and "HR") by 

state and disease for the specified month. It reshapes the data to a wide format with states as rows and 

diseases as columns, excluding specific diseases from the analysis. The script then computes 

summary statistics, including total counts of outbreaks predicted and overall counts for each state and 

disease. The results are saved to a CSV file named with the current month and year. 

 

#Outbreak Counts Calculation 

df_nd=df_total 

df_nd=df_nd[,c("out","month")] 

df_count0=sqldf("select count(df_nd.out) as Out_count0,df_nd.month from 

df_nd 

               where df_nd.out=0 

               group by df_nd.month") 
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df_count1=sqldf("select count(df_nd.out) as Out_count1,df_nd.month from 

df_nd 

               where df_nd.out=1 

               group by df_nd.month") 

 

outb_df=merge(df_count0,df_count1,all=T) 

fnm=paste(paste(month_name[month_number,2]," ",current_year,"/",sep = 

""),"Outbreak Counts ",month_name[month_number,2]," 

",current_year,".csv",sep="") 

write.csv(outb_df,fnm) 

 

The script begins by selecting the columns "out" and "month" from the df_total data 

frame. It then calculates the count of outbreaks where out is 0 and 1, grouped by month, storing 

these counts in separate data frames (df_count0 and df_count1). These counts are merged into a 

single data frame (outb_df), and the combined data is saved to a CSV file named with the current 

month and year, detailing the outbreak counts. 

 

# Directory Creation and Library Loading 

Forecastingtable_dir=paste(paste(month_name[month_number,2]," 

",current_year,"/",sep=""),month_name[month_number,2]," ",current_year," 

T",sep="") 

dir.create(path = table_dir) 

detach("package:xlsx", unload=TRUE) 

library(xlsx) 

wb = createWorkbook() 

 

This section starts by creating a directory to store the Excel files. The directory name is 

based on the current month and year. It then ensures the xlsx package is unloaded if previously 

loaded and reloads it. A new Excel workbook (wb) is initialized for exporting data. 

 

#Data Processing and Export to Excel 

st=sort(as.character(unique(df_total[,"state_name"]))) 

print("Exporting to Excel for each state") 

i=1 

for(i  in 1:36) 

{ 

df_temp=df_total[,c("state_id","state_name","district_id","district_name"

,"disease_id","disease_name","month"),] 

df_temp=df_temp[which(df_temp$month==month_name[month_number,1] & 

df_temp$state_name==st[i]),] 

state_name =unique(as.character(df_temp[,"state_name"])) 

df_cast=dcast(df_temp,state_name+district_name~disease_name)   

drops=c("Contagious caprine pleuro pneumonia","Rabies") 

df_disease_final=df_cast[,!(names(df_cast) %in% drops)] 
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#colnames(df_disease_final)=c(paste("State Name","Districts 

of",state_name),"Anthrax","Babesiosis","BQ","BT","ET","Fascioliasis","FMD

","HS","PPR","S&G Pox","SF","Theileriosis","Trypanosomiasis") 

colnames(df_disease_final)=c("State Name",paste("Districts 

of",state_name),"African Swine 

Fever","Anthrax","Babesiosis","BQ","BT","Classical Swine 

fever","ET","Fascioliasis","FMD","HS","Lumpy skin disease","PPR","S&G 

Pox","Theileriosis","Trypanosomiasis") 

title <- paste(" District wise Livestock Disease forewarning for ", 

as.character(month_name[month_number, 2]), " ", current_year, " : ", 

state_name, sep="") 

sheet <- createSheet(wb, state_name)  

v_df <- data.frame(title) 

# Add an extra row to match the number of columns in df_disease_final 

v_df <- rbind(v_df, rep(NA, ncol(df_disease_final))) 

# Set names to match the title 

names(v_df) <- title 

setColumnWidth(sheet, colIndex = c(1:ncol(df_disease_final)), colWidth = 

15) 

addDataFrame(v_df, sheet = sheet, startColumn = 7, startRow = 1, 

row.names = FALSE)   

addDataFrame(df_disease_final, sheet = sheet, startColumn = 1, startRow = 

2, row.names = FALSE) 

} 

 

This section processes data for each state. It loops through all states, filters the data for the 

current month and state, and reshapes it to show disease counts by district. Unwanted diseases are 

removed, and columns are renamed for clarity. Each state's data is added to a new sheet in the Excel 

workbook with a descriptive title. Column widths are adjusted for readability, and the data is added 

to the sheet. 

 

#Saving the Workbook 

file_xls= paste(table_dir,"/","State Forecasting 

",as.character(month_name[month_number,2])," 

",current_year,".xlsx",sep="") 

saveWorkbook(wb, file_xls) 

 

This section constructs the filename for the Excel file based on the current month and year. It then 

saves the workbook (wb) to the specified directory with the constructed filename, completing the 

export process. 

 

 

#Directory Creation and Library Loading 

library(tmap) 

i=1 
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plot_dir=paste(paste(month_name[month_number,2]," 

",current_year,"/",sep=""),month_name[month_number,2]," ",current_year," 

N",sep="") 

dir.create(path = plot_dir) 

 

This section loads the tmap library required for thematic mapping. It then creates a 

directory to store the plot files. The directory name includes the current month and year to organize 

the output files. 

 

#Data Preparation and Plotting 

disease = c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189)  

state.sp=readOGR("shapefile") 

while(i<=length(disease)){ 

kar=k1 

cols=as.character(unique(df_total[df_total$disease_id==disease[i],"diseas

e_name"])) 

df_disease=df_total[which(df_total$month==month_name[month_number,1] & 

df_total$disease_id==disease[i]),]  

Available",disease[i],0.00)) 

df_disease=df_disease[,c("state_id","state_name","district_id","district_

name","disease_id","vv")] 

df_disease=setNames(df_disease,c("ST_CEN_CD","state_name","DT_CEN_CD","di

strict_name","disease_id","vv"))   

kar@data=join(data.frame(kar@data),data.frame(df_disease),by=c("ST_CEN_CD

","DT_CEN_CD"),type="left",match="first") 

   

#write.csv(kar@data, "merged_data.csv", row.names = FALSE) 

colours<-c("darkgrey","#FFFF00","#FFC1C1","#FF7150","#FF8500","darkred") 

kar$vv[is.na(kar$vv)]<-0 

kar$lb=factor(mapply(f,kar$vv),levels=1:6,labels=c("No Risk / No 

Data","Very Low Risk","Low Risk","Medium Risk","High Risk","Very High 

Risk"))  

cols=gsub("&", "and",cols) 

disname= gsub("\\."," ",cols) 

if(disname=="Enterotoxaemia") 

{ 

    disname="Enterotoxemia" 

  } 

cat("Plot for disease:",disname,"\n") 

plot_loc=paste(plot_dir,"/",disname,"/",sep="") 

dir.create(plot_loc) 

file_name=paste(plot_loc,disname,"_resmod.png",sep="") 

plot_title= paste(" Risk Prediction of ",disname," for the month of 

",month_name[month_number,2]," ",current_year," ",sep="") 

#plot_title= paste(disname," risk 

prediction(",month_name[month_number,2]," ",current_year,")",sep="") 
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#plot_title= paste(disname) 

png(file_name,width = 6, height = 4, units = 'in',res = 200) 

   

   

#print(spplot(obj = kar,c("lb"),col.regions=colours,main = 

list(plot_title,cex=0.8),key.space=list(x=0.2,y=0.9,corner=c(0,1)),scales

=list(draw = TRUE))) 

  t_map=tm_shape(kar, unit = "km") + 

    tm_polygons(col = "lb", style = "jenks", 

                border.alpha = 0, title = "", palette = 

c("skyblue","yellow","pink","pink3","orange","#FF0000")) + 

    tm_scale_bar(breaks = c(0, 100, 200), size = 1, position=c("left", 

"bottom")) + 

    tm_compass(type = "arrow", position = c("right","top")) +  

    tm_layout(main.title = plot_title,   

              main.title.size = 0.55, frame = FALSE) 

   

  t_map1=t_map+tm_shape(state.sp, unit = "km") + tm_borders() 

  print(t_map1) 

  dev.off() 

  i=i+1 

} 

 

This section iterates through a list of disease IDs, processes data related to each disease, 

and generates maps to visualize risk predictions. For each disease, it prepares a dataset and merges it 

with spatial data. It then creates a color-coded map using tmap, specifying risk levels with distinct 

colors. Each map is saved as a PNG file in a directory named after the disease, with appropriate titles 

and legends. 

 

#Data Table Export 

df_tot=df_total 

df_tot$Outcome=factor(mapply(f,df_tot$vv),levels=1:6,labels=c("No Risk / 

No Data","Very Low Risk","Low Risk","Medium Risk","High Risk","Very High 

Risk")) 

df_tot$month_letter=month.name[month_number] 

load("cs_NDR_table.RData") 

cs_ndr_final 

df_tot=df_tot[,cs_ndr_final] 

write.csv(df_tot,paste0("upload_",month.name[month_number],".csv"),row.na

mes = F) 

 

final_eval12=final_eval 

fwrite(final_eval,paste0(paste(month_name[month_number,2],current_year),"

/Eval.csv")) 

} 

nadres_func(current_year,year_number,month_number) 
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This section prepares a data table for uploading to a website. It converts the numeric risk 

values to categorical outcomes and adds a column for the month. It then loads a predefined table 

structure (cs_NDR_table.RData), filters the columns accordingly, and writes the updated data to a 

CSV file. Additionally, it saves another evaluation file (final_eval) to a CSV format for future use. 

 

 

Part-2: To obtain district level disease maps 
 

The nadres_func_state_maps function begins by setting the current year, year number, and 

month number, and then loads a suite of R libraries for data processing, spatial analysis, and machine 

learning. It initializes a mapping of month numbers to names, reads outbreak data from a CSV file, 

and categorizes the data into risk levels. The function creates a directory for saving plot outputs, loads 

a shapefile of Indian districts, and prepares the data by joining disease and spatial information. For 

each disease and state, it generates color-coded risk maps using spplot, assigning risk levels based on 

predefined thresholds, and saves these maps as PNG files with appropriate titles and labels. Finally, 

the function is executed with the specified parameters to produce the visualizations. 

 

# Function Definition and Library Loading 

month_number=month number; year_number= from year; current_year= 

predicted year;   

nadres_func_state_maps=function(current_year,year_number,month_number) 

{ 

  print(current_year) 

  print(year_number) 

  print(month_number) 

   

  library(RMySQL) # database connection 

  library(rgdal) # to read shapefile 

  library(RColorBrewer) # color palette 

  library(sqldf) # to execute sql queries 

  library(data.table) # to read csv files  

   

  library(reshape2) # melt or dcast 

  library(imputeMissings) # to fill missing values 

  require(sp) # spatial data 

  require(spdep) # spatial weights matrix 

  require(rms)  

  library(xlsx) #to read xlsx files 

  library(plyr) #to join dataframes 

  library(randomForest) # random forest model 

  library(dismo) # gbm  

  library(xgboost) #xgboost 

  library(mgcv) 

  library(earth) 

  library(e1071) 
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  library(rpart) 

  library(glmnet) 

  library(fda) 

  library(kernlab) 

  library(neuralnet) 

  library(nnet) 

  library(kernlab) 

  library(psych) 

  library(pROC) # to calculate roc value 

  library(SDMTools) # kappa 

  library(BIOMOD)# TSS 

   

The function nadres_func_state_maps begins by defining and printing input parameters for 

the current year, year number, and month number. It then loads a series of R libraries used for various 

data processing tasks, including database connections, spatial data handling, machine learning, and 

data manipulation. 

 

#Month Name and Data Preparation 

month_name=data.frame( month=c(1:12), 

month_names=c("January","February","March","April","May","June","July","A

ugust","September","October","November","December") 

  ) 

   

# import predicted data  

  df_total=fread("outputfile.csv",header=T,check.names=F,data.table = F) 

  f=function(m){ 

    if(m<=0.0 | is.na(m)) i=1 

    else if(m>=0.0 && m<=0.20) i=2 

    else if(m>=0.21 && m<=0.40) i=3 

    else if(m>=0.41 && m<=0.60) i=4 

    else if(m>=0.61 && m<=0.80) i=5 

    else i=6 

  } 

    

df_total$cate=factor(mapply(f,df_total$vv),levels=1:6,labels=c("NR","VLR"

,"LR","MR","HR","VHR")) 

 

This part sets up the month_name data frame to map month numbers to names. It then reads a CSV 

file containing outbreak data into df_total. A function f is defined to categorize the risk levels into six 

groups based on the vv values. These categories are then applied to the df_total data frame. 

 

#Plot Directory Creation and Shapefile Loading 

plot_dir=paste(paste(month_name[month_number,2]," 

",current_year,"/",sep=""),month_name[month_number,2]," ",current_year," 

N",sep="") 

dir.create(path = plot_dir) 
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disease = c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189)  

   

# India district shapefile 

kar1=readOGR(dsn = "shapefile",verbose = FALSE) 

names(kar1)[1]<-"DISTRICT" 

names(kar1)[2]<-"ST_NM" 

names(kar1)[3]<-"ST_CEN_CD" 

names(kar1)[4]<-"DT_CEN_CD" 

kar1@data 

st=unique(as.character(kar1$ST_NM)) 

 

This section creates a directory for storing plots and loads the shapefile of Indian states and 

districts. The shapefile is renamed to match the expected column names, and the unique state names 

are extracted from the data. 

 

#Disease and State Loop for Plot Generation 

i=j=1 

i=1 

while(i<=length(disease)){ 

for (j in 1:length(st)) { 

kar=kar1[kar1$ST_NM==st[j],] 

   

cols=as.character(unique(df_total[df_total$disease_id==disease[i],"diseas

e_name"])) 

df_disease=df_total[which(df_total$month==month_name[month_number,1] & 

df_total$disease_id==disease[i]),]          

df_disease=df_disease[,c("state_id","state_name","district_id","district_

name","disease_id","vv")]  

df_disease=setNames(df_disease,c("ST_CEN_CD","state_name","DT_CEN_CD","di

strict_name","disease_id","vv"))    

kar@data=join(data.frame(kar@data),data.frame(df_disease),by=c("ST_CEN_CD

","DT_CEN_CD"),type="left",match="first") 

colours<-c("white","#FFFF00","#FFC1C1","#FF7150","#FF8500","darkred") 

kar$vv[is.na(kar$vv)]<-0 

kar$lb=factor(mapply(f,kar$vv),levels=1:6,labels=c("No Risk / No 

Data","Very Low Risk","Low Risk","Medium Risk","High Risk","Very High 

Risk")) 

     

cols=gsub("&", "and",cols) 

disname= gsub("\\."," ",cols) 

  if(disname=="Enterotoxaemia") 

      { 

        disname="Enterotoxaemia" 

      } 

      cat("Plot for disease:",disname,st[j],"\n") 

      plot_loc=paste(plot_dir,"/",sep="") 
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file_name=paste(plot_loc,disname,"_",st[j],"_",month_name[month_number,2]

,".png",sep="") 

plot_title= paste(st[j]," Risk Prediction of ",disname," for the month of 

",month_name[month_number,2]," ",current_year," ",sep="") 

png(file_name,width = 6, height = 4, units = 'in',res = 200) 

print(spplot(obj = kar,c("lb"),col.regions=colours,main = 

list(plot_title,cex=0.8),key.space=list(x=0.2,y=0.9,corner=c(0,1)) 

                   ,sp.layout = list("sp.text", 

coordinates(kar),kar$district_name,cex=0.5),scales=list(draw = TRUE))) 

dev.off() 

    } 

    i=i+1}} 

 

The function iterates through each disease and each state. For each combination, it filters and merges 

disease data with spatial data, assigns risk levels, and generates a plot using spplot. Each plot is saved 

as a PNG file in the previously created directory. The color scheme is defined, and the risk levels are 

labelled. 

 

nadres_func_state_maps(current_year,year_number,month_number) 

 

Finally, the function nadres_func_state_maps is called with the specified parameters to execute the 

plotting process. 
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Step-4: Watermarking for maps created at the district and state levels 

 
After generating all district- and state-level maps, it is crucial to incorporate a watermark 

to ensure the authenticity and ownership of the visualizations. Specifically, the inclusion of the 

NIVEDI logo on each map before publication on the NADRES website is essential. This 

watermarking process not only helps in branding and protecting intellectual property but also 

maintains the integrity of the maps by clearly identifying the source. By embedding the logo in the 

maps, the final output is safeguarded against unauthorized use, and the association with the National 

Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) is prominently displayed, 

reinforcing credibility and transparency in the presented data. 

 

I. National level maps (visual, state-by-state) 

 

library(magick) 

im=list.files(path="maps/",pattern = ".png",full.names = T,recursive = F) 

img1=image_read('logo.png') 

i=1 

for (i in 1:length(im)) { 

img=image_read(im[i]) 

img2=image_composite(img, image_scale(img1, "x120"), offset = "+470+300") 

  

image_write(image = img2,paste0("mapsnew/",i,".png")) 

   

} 

 

The provided R code snippet utilizes the magick library to watermark a series of map 

images with a logo. It begins by listing all PNG files in the maps/ directory and reading a logo image 

(logo.png). For each map image, the code reads the image, overlays the logo at a specific position 

with a scaled size, and then saves the watermarked image to a new directory (mapsnew/). This process 

ensures that each map is branded with the logo, enhancing ownership and preventing unauthorized 

use. The watermark is positioned at a defined offset to avoid obscuring important map details. 

 

II.  Watermarking for District wise maps 

 

The script leverages the magick package in R to systematically add a watermark, such as a 

logo, to a series of district-wise map images for 15 different diseases across various states. It begins 

by defining the file paths for both the map images and the watermark. For each map image, the script 

reads the image and the watermark using the image_read() function. It then resizes the watermark to 

a specified width using image_resize() to maintain consistency across all images. The watermark is 

overlaid onto each map image with the image_composite() function, where the position of the 

watermark is adjusted using specified offsets to ensure optimal placement and visibility. This step is 

repeated for each disease and state, ensuring that the watermark is appropriately positioned and does 

not obstruct important map details. Finally, the watermarked images are saved to a designated output 

directory with filenames reflecting their respective states and diseases. This automated approach 

allows for efficient processing and branding of a large number of map images, ensuring uniformity 

and professionalism across the dataset. 
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# install.packages("magick") 

library(magick) 

img1=image_read('LOGO') 

im=list.files(path="State maps/",pattern = 

glob2rx("*_ANDAMAN*.png"),full.names = T,recursive = F) 

im 

i=1 

# for (i in 1:length(im)) { 

 

for (i in 1:length(im)) { 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+400+500") 

  image_write(image = img2,paste0("1/",basename(im[i]))) 

} 

 

img1=image_read('LOGO.png') 

im=list.files(path="State maps/",pattern = 

glob2rx("*_ANDHRA*.png"),full.names = T,recursive = F) 

i=1 

img=image_read(im[i]) 

#img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+400+500") 

#img2 

#img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+700") 

#img2 

img2=image_composite(img, image_scale(img1, "x100"), offset = "+400+500") 

img2 

for (i in 1:length(im)) { 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+400+500") 

  img2 

  image_write(image = img2,paste0("1/",basename(im[i]))) 

} 

 

im=list.files(path="State maps/",pattern = 

glob2rx("*_ARUNACHAL*.png"),full.names = T,recursive = F) 

i=1 

img=image_read(im[i]) 

img2=image_composite(img, image_scale(img1, "x100"), offset = "+600+500") 

img2 

# img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+800+500") 

# img2 
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# img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+500") 

# img2 

for (i in 1:length(im)) { 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+500") 

  img2 

  image_write(image = img2,paste0("1/",basename(im[i]))) 

} 

 

img1=image_read('LOGO.png') 

im=list.files(path="State maps/",pattern = 

glob2rx("*_ASSAM*.png"),full.names = T,recursive = F) 

i=1 

img=image_read(im[i]) 

img2=image_composite(img, image_scale(img1, "x100"), offset = "+450+500") 

img2 

for (i in 1:length(im)) { 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+500") 

  img2 

  image_write(image = img2,paste0("1/",basename(im[i]))) 

} 

 

img1=image_read('LOGO.png') 

im=list.files(path="State maps/",pattern = 

glob2rx("*_BIHAR*.png"),full.names = T,recursive = F) 

i=1 

img=image_read(im[i]) 

img2=image_composite(img, image_scale(img1, "x100"), offset = "+650+500") 

img2 

{for (i in 1:length(im)) { 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+500") 

  img2 

  image_write(image = img2,paste0("1/",basename(im[i]))) 

} 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_CHANDIGARH*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 
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  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+500") 

  # img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+800+500") 

  # img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+900+500") 

  # img2 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_CHHATTISGARH*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+750+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_DADRA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

  img2 
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  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_DAMAN*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+350") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+500") 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+500") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+350") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

  

  im=list.files(path="State maps/",pattern = 

glob2rx("*_GOA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+500") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 
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    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_GUJARAT*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_HARYANA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+400+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+400+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_HIMACHAL*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 
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  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_JAMMU*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_JHARKHAND*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+700+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+700+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_KAR*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 
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  im=list.files(path="State maps/",pattern = 

glob2rx("*_KER*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+800+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_LAKSHAD*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_MADHYA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 
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    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

    

  im=list.files(path="State maps/",pattern = 

glob2rx("*_MAHARA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+350+550") 

  img2 

   

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+350+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_MANIPUR*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+575+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+575+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

     

  im=list.files(path="State maps/",pattern = 

glob2rx("*_MEGHALA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+550") 

  # img2 
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  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+400") 

  # img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+500") 

  # img2 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+750+480") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+750+480") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_MIZORA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+480") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+550") 

  # img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+800+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_NAGALAND*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

  img2 

  for (i in 1:length(im)) { 
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    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+450+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_DEL*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_ODISHA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+450") 

  img2 

  # img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+850+550") 

  # img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+450") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_PUDUC*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 
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  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_PUNJAB*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_RAJAS*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_SIKKIM*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 
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  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_TAMIL*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_TELANGANA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+500+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

 

  im=list.files(path="State maps/",pattern = 

glob2rx("*_TRIPURA*.png"),full.names = T,recursive = F) 

  i=1 
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  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+500+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+550+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_UTTAR*.png"),full.names = T,recursive = F) 

  im=list.files(path="State maps/",pattern = glob2rx("*_UTTAR 

PRA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+650+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_UTTARA*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+625+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+625+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

    

  im=list.files(path="State maps/",pattern = 

glob2rx("*_WEST*.png"),full.names = T,recursive = F) 
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  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+550") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) 

  } 

   

  im=list.files(path="State maps/",pattern = 

glob2rx("*_LADAKH*.png"),full.names = T,recursive = F) 

  i=1 

  img=image_read(im[i]) 

  img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+500") 

  img2 

  for (i in 1:length(im)) { 

    img=image_read(im[i]) 

    img2=image_composite(img, image_scale(img1, "x100"), offset = 

"+600+500") 

    img2 

    image_write(image = img2,paste0("1/",basename(im[i]))) }} 
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Step-5: Data file preparation for warnings and alerts uploading to the website 

 
To obtain warnings and alerts information: Based on the risk variable for a specific disease, 

warnings will be issued to districts identified as Very High and High Risk, indicating a high likelihood 

of disease outbreak. Conversely, alerts will be sent to districts predicted to be at Moderate Risk, 

signifying a lower but still notable risk of disease transmission. This approach ensures targeted 

responses tailored to the varying levels of risk, allowing for more effective allocation of resources 

and implementation of preventive measures. 

 

#Environment Setup and Data Reading 

Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk1.8.0_201\\') 

library(qdap) 

vp=beg2char(Sys.Date(),"-",2) #c("2018-11") 

month_number= as.numeric(substr(vp,6,7))+2  #"11" 

month_number=ifelse(month_number>12,month_number-12,month_number) 

mch=month.name[month_number] 

year=beg2char(vp,"-") 

 

This section sets up the Java environment and loads the qdap library. It calculates the month and 

year for the report, adjusting for month transitions if necessary. 

 

 

#Reading Data 

#d=read.csv(paste0("../NADRES_PCA_Delta_March_2024.csv")) 

d=read.csv(paste0("../","upload_",mch,".csv")) 

 

The script reads a CSV file corresponding to the current month, which contains the risk data. 

 

#Filtering Data for Risk Levels 

d1=d[d$Outcome=="High 

Risk",c("month_letter","disease_name","district_name")] 

d2=d[d$Outcome=="Very High 

Risk",c("month_letter","disease_name","district_name")] 

d3=rbind(d1,d2) 

d3=d3[!duplicated(d3),] 

d4=d[d$Outcome=="Medium 

Risk",c("month_letter","disease_name","district_name")] 

 

This segment filters the data for high, very high, and medium risk levels, removing duplicates to 

ensure unique entries. 

 

#Generating Alerts for Medium Risk 

dis=as.character(unique(d3$disease_name)) 

i=1 

tmp1=d4 

d4_h=c() 
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for (i in 1:length(dis)) { 

  d4=tmp1[tmp1$disease_name==dis[i],] 

  v=paste0("<tr class='row100 body'> 

  <td class='cell100 column1 alert'>Alert</td> 

    <td class='cell100 column2'>",mch,"</td>", 

           "<td class='cell100 

column3'>",paste0(d4$district_name,collapse = ","),"</td>", 

           "<td class='cell100 column4'>",dis[i],"</td>") 

  d4_h=append(d4_h,v) 

}     

write.table(d4_h,file = "NDR_SOL_MR.CSV",row.names = F,eol = 

"</tr>",sep="\n")     

tmp1=d3 

d4_h=c() 

for (i in 1:length(dis)) { 

  d4=tmp1[tmp1$disease_name==dis[i],] 

  v=paste0("<tr class='row100 body'> 

           <td class='cell100 column1 warning'>Warning</td> 

           <td class='cell100 column2'>",mch,"</td>", 

           "<td class='cell100 

column3'>",paste0(d4$district_name,collapse = ","),"</td>", 

           "<td class='cell100 column4'>",dis[i],"</td>") 

  d4_h=append(d4_h,v) 

} 

write.table(d4_h,file = "NDR_SOL_hr_vhr.CSV",row.names = F,eol = 

"</tr>",sep="\n") 

 

The script generates HTML-like alert strings for districts at medium risk, formatting them into a 

CSV file NDR_SOL_MR.CSV. 

 

 

#Generating Warnings for High and Very High Risk 

ds=d[d$Outcome==c("Medium Risk","High Risk","Very High 

Risk"),c("month_letter","disease_name","state_name")] 

ds=ds[!duplicated(ds),] 

dis=as.character(unique(d$disease_name)) 

i=1 

tmp1=ds 

d4_h=c() 

for (i in 1:length(dis)) { 

  d4=tmp1[tmp1$disease_name==dis[i],] 

   

  v=paste0(d4$state_name,collapse = ",") 

  d4_h=append(d4_h,v) 

} 

d4_h=data.frame(dis,d4_h) 
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write.table(d4_h,file = "1 state_NDR_SOL_hr_vhr.CSV",row.names = F) 

 

This part of the script generates a state-wise report of predicted diseases for various risk 

levels and saves it to 1 state_NDR_SOL_hr_vhr.CSV, providing a comprehensive overview of disease 

predictions across states. 
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Step- 6: To assess geographic correlation, used the Moran-I index 

 
The Moran-I index is used to analyze spatial autocorrelation, which assesses the degree of 

similarity in values between neighbouring locations within a geographic dataset. By conducting 

Moran-I index analysis, we can identify spatial patterns, clusters, or spatial outliers in the data, 

helping us understand if there are significant spatial trends or dependencies present. This analysis 

aids in various fields such as urban planning, epidemiology, and environmental studies by informing 

decision-making processes related to resource allocation, policy formulation, and spatial targeting of 

interventions. 

 

The goal of the script is to analyse the spatial distribution of disease outbreaks across 

various districts in India by calculating Moran's I statistic. Moran's I measures spatial autocorrelation, 

indicating whether high or low values (e.g., disease outbreaks) are clustered together in space. The 

analysis is carried out for a specific month and year range, and the results are saved in a CSV file. 

 
#Data Preparation and Filtering 

month_number = month number  #Predicted Month 

year_number = from year 

current_year = predicted year 

 

# function Moran I -------- 

moran_ndr = function(month_number, year_number, current_year)  

   

library(data.table) 

library(plyr) 

library(rgdal) 

library(spdep) # for neighbouring list, weighted matrix 

library(plyr) 

library(reshape2) 

 

disease = c(8,10,11,12,31,35,37,48,60,65,70,72,79,146,189) 

df_dat = fread("dist_out_nadres_2024-03-04 11_20_54.csv", 

               header = T, 

               check.names = F, 

               data.table = F 

) 

dis = df_dat[df_dat$disease_id %in% disease, c("disease_id", 

"disease_name")] 

dis = dis[!duplicated(dis), ] 

 

# filter data for month nad ten years data 

d = df_dat[df_dat$month == month_number & 

             df_dat$year >= year_number & 

             df_dat$year <= current_year & 

             df_dat$number_of_outbreaks != 0, ] 
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d = na.omit(d) 

d$state_name = toupper(d$state_name) 

d = d[!d$state_name == "ANDAMAN & NICOBAR ISLANDS", ] 

d[d$state_name == "ARUNANCHAL PRADESH", "state_name"] = "ARUNACHAL 

PRADESH" 

 

This section prepares the data by setting parameters for the month and year of interest, 

loading necessary libraries, and reading the data from a CSV file. It then filters the data for relevant 

diseases and time periods, cleans it by removing NA values and standardizing state names. 

 

#Shapefile Processing and Spatial Analysis 

ka1 = readOGR("~/1shp/2011_Dist.shp") 

df = NULL 

j = 1 

for (j in 1:length(disease)) { 

   

d2 = d[d$disease_id == disease[j],] 

st = as.character(unique(d2$state_name)) 

i = 1 

s = c() # to store state name 

it = c() # to store moran I 

for (i in 1:length(st)) { 

ka = ka1[ka1$ST_NM == st[i], ] 

as.character(unique(ka1$ST_NM)) 

d1 = d2[d2$state_name == st[i], ] 

colnames(d1)[c(1, 4)] = c("ST_NM", "DISTRICT") 

if (length(unique(d1$district_id)) > 2) { 

      ka@data = join(data.frame(ka@data), 

                     d1, 

                     match = "first", 

                     type = "left") 

 #View(ka@data) 

 # generate neighbouring list for district polygons 

 wgt = poly2nb(ka, row.names(ka)) 

 # check for non neighbouring polygons 

 nghb.list = unlist(lapply(wgt, sum)) 

 ind_non_nb = which(nghb.list == 0) 

 # if non neighbouring polygons exist, remove it 

 if (length(ind_non_nb) >= 1 & nrow(ka)!=length(ind_non_nb)) 

      { 

        ka = ka[-ind_non_nb,] 

        # neighbour index list 

        wgt = poly2nb(ka, row.names(ka)) 

        # neighbour matrix as 0 or 1 

        wm <- nb2mat(wgt, style = 'B', zero.policy = T) 

        # weighted matrix list  
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        ww <-  nb2listw(wgt, style = 'B', zero.policy = T) 

        # set NA to 0 

        ka$number_of_attacks[is.na(ka$number_of_attacks)] = 0 

        # convert to 1 

        ka[ka$number_of_attacks > 0, "number_of_attacks"] = 1 

        # calculate moran I 

        v = moran( 

          ka$number_of_attacks, 

          ww, 

          n = length(ww$neighbours), 

          S0 = Szero(ww) 

        ) 

        # if moran I is NULL 

        if (is.nan(v$I)) { 

          it = append(it, 0) 

        } else{ 

          it = append(it, v$I) 

        } 

        # add state, moran I 

        s = append(s, st[i]) 

      } else { 

        wm <- nb2mat(wgt, style = 'B', zero.policy = T) 

        wgt = poly2nb(ka, row.names(ka)) 

        wm <- nb2mat(wgt, style = 'B', zero.policy = T) 

        ww <- nb2listw(wgt, style = 'B', zero.policy = T) 

        ka$number_of_attacks[is.na(ka$number_of_attacks)] = 0 

        ka[ka$number_of_attacks > 0, "number_of_attacks"] = 1 

 

        # calculate moran I 

        v = moran( 

          ka$number_of_attacks, 

          ww, 

          n = length(ww$neighbours), 

          S0 = Szero(ww) 

        ) 

        # if moran I is NULL 

        if (is.nan(v$I)) { 

          it = append(it, 0) 

        } else{ 

          it = append(it, v$I) 

        } 

        # add state, moran I 

        s = append(s, st[i]) 

      } }   } 

  # when df is empty 

  if (j == 1) { 
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    df = cbind(df, s, it, disease[j]) 

  }    else{ 

    # when df is not empty, append rows 

    df = rbind(df, cbind(s, it, disease[j])) 

  } } 

 

In this section, a shapefile (ka1) of Indian districts is loaded. An empty data frame df is 

created to store Moran’s I values. The code loops through each disease, filters the data accordingly, 

and processes it by state. For each state, the shapefile data is merged with the disease data, and 

neighboring districts are identified using poly2nb. Moran’s I is computed for states with more than 

two districts, and results are stored in df. Non-neighboring districts are removed if necessary, and 

Moran’s I values are calculated and appended to df. 

 

#Data Formatting and Output 

temp = df 

colnames(df) = c("State", "Moran_I", "disease_id") 

# join disease and moran I data 

df1 = join(data.frame(df), dis, match = "first", type = "left") 

# remove disease id column 

df1 = df1[, -1] 

# rename columns 

colnames(df1) = c("state", "moran_I", "disease_name") 

# cast disease as columns, moran I value in cells 

df_cast = dcast(df1, 

                formula = as.formula("state~disease_name"), 

                value.var = "moran_I") 

 

fwrite(df_cast, paste0("Moran I_", month.name[month_number], ".csv")) 

moran_ndr(month_number, year_number, current_year) 

 

The final part of the script formats the computed Moran's I values into a data frame, 

reshaping it so that each state is a row and each disease is a column. The results are saved to a CSV 

file for easy access and further analysis. This output helps visualize and interpret the spatial 

distribution of disease outbreaks across different states. 
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Step- 7: Forecasting weather parameters at state level 
 

The R code conducts a detailed time series analysis of weather parameters using ARIMA 

models to forecast future values based on historical data. It involves constructing various ARIMA 

model configurations to identify the most suitable model for each parameter, based on the Akaike 

Information Criterion (AIC). By converting weather data into time series objects and applying these 

models, the code generates forecasts for the next five years, transforming predictions back to their 

original scale if needed. The results are saved in CSV files and visualized through plots that compare 

historical data with forecasts. Additionally, the root mean squared error (RMSE) is calculated to 

assess forecast accuracy, providing a robust framework for understanding long-term trends and 

supporting decision-making processes in fields such as epidemiology. 

 

#Loading Required Libraries 

library (tseries) 

library(forecast) 

 

These libraries provide essential functions for time series analysis (tseries), forecasting with 

ARIMA models (forecast), and numerical analysis (pracma). 

 

#Defining ARIMA Model Parameters 

p=rep(c(1:3),each=3) 

d=rep(c(0),length=9) 

q=rep(c(1:3),length=3) 

p 

pdq_df=data.frame(p,d,q) 

p=rep(c(1:3),each=3) 

d=rep(c(1),length=9) 

q=rep(c(1:3),length=3) 

pdq_df1=rbind(pdq_df,cbind(p,d,q)) 

 

Here, different combinations of ARIMA parameters (p, d, q) are generated for both non-

seasonal and seasonal components. pdq_df and pdq_df1 hold these parameter sets, enabling 

exploration of various ARIMA models. 

 

 

#Reading and Preparing Data 

v1= read.csv(file.choose(),header = TRUE,sep="\t") 

v1=read.table("clipboard",header = TRUE,sep="\t") 

cs=colnames(v1) 

cs=cs[-1] 

 

This code reads weather data from a file or clipboard and extracts column names, excluding the first 

column, which is assumed to be a time index. 

 

#Model Selection and Forecasting 

m=1 
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for (m in 1:length(cs)) 

{ 

  v2=v1[,cs[m]] 

  if(cs[m]=="Rainfall") 

  { 

    v2=v2*86400   

  }   

   

  ts_sh=ts(data=v2,start = 2001,frequency = 12) 

  aic_val=c() 

  for (i in 1:nrow(pdq_df1 ))  

  { 

    v=pdq_df1[i,] 

    m1=try(arima(log(ts_sh), order = c(as.numeric(v)), 

seasonal=list(order=c(as.numeric(v)),period=12)),silent = T) 

    if(class(m1)=="Arima") 

    { 

      aic_val=append(aic_val,m1$aic)   

    } else aic_val=append(aic_val,NA)     

  } 

  ind_order=which(min(aic_val,na.rm = T)==aic_val) 

  best=pdq_df1[ind_order,] 

  m1.b=arima(log(ts_sh), order = c(as.numeric(best)), 

seasonal=list(order=c(as.numeric(best)),period=12)) 

  p1.b=predict(m1.b,n.ahead = 5*12) 

  p2.b = 2.718^p1.b$pred 

   

  p2.df=data.frame(p2.b) 

  yr=rep(2021:2025,each=12) 

  mn=rep(1:12,length=60) 

  year_mn_pred=data.frame(year=yr,month=mn,p2.b) 

  colnames(year_mn_pred)[3]=cs[m] 

  write.csv(year_mn_pred, file = paste0(cs[m],".csv"),row.names = F) 

   

  png(filename =paste0(cs[m],".png"),width = 6,height = 4,units = 

"in",res = 200) 

  ts.plot(ts_sh,p2.b,lty=c(1,3),main=paste0("Forecasting of ",cs[m]," 

till 2025"),col=c("#008080","#000080"),lwd=3)  

  dev.off() 

} 
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This section iterates over each weather parameter, adjusts units if necessary, and creates a 

time series object. It fits ARIMA models using the predefined parameters, selects the model with the 

lowest AIC, and uses it to forecast the next 5 years. The forecasts are transformed back from the log 

scale to the original scale, saved to a CSV file, and plotted for visualization. 

 

 

m1 

ind_order 

best 

p2.b 

library (pracma) 

t=rmserr(p2.b, p1.b$pred,summary=T) 

 

The root mean squared error (RMSE) is calculated to evaluate the accuracy of the forecasted values 

compared to the predicted values, providing a measure of forecast reliability. 

 

             The provided R code systematically applies ARIMA models to historical weather data to 

identify the best forecasting model based on AIC. It generates forecasts for the next five years, saves 

the results, and visualizes them with plots. The accuracy of these forecasts is assessed using RMSE, 

ensuring reliable and actionable insights into weather trends. 
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Step- 8: Finding Significant Weather Parameters for livestock Diseases 

 
The provided R code performs a statistical analysis of weather-related variables across 

different diseases using Linear Discriminant Analysis (LDA) and Analysis of Variance (ANOVA). 

The objective is to identify which weather parameters significantly affect the classification of 

different diseases. This process involves standardizing the data, fitting LDA models to classify 

diseases based on weather parameters, and conducting ANOVA to assess the significance of these 

parameters. The results are summarized and saved for further interpretation. 

 

#Loading Libraries and Reading Data 

library(MASS) 

library(data.table) 

df=read.csv("inputfile.csv") 

 

The code loads the MASS library for LDA functions and the data.table library for efficient data 

manipulation. It then reads the dataset from a CSV file, which includes weather and disease data. 

 

#Handling Missing Values in dataframe 

df[is.na(df)] <- 0 

 

This line replaces all missing values in the dataframe with zero, ensuring that subsequent analyses 

are not affected by missing data. 

 

#Preparing for Analysis 

# Get unique disease values 

diseases <- unique(df$disease_name) 

 

# Create a list to store results for each disease 

results_list <- list() 

 

# Loop through each disease 

for (disease in diseases) { 

  subset_df <- subset(df, disease_name == disease) 

  variables_to_scale <- subset_df[, c("PET", "Vapour_pressure")] 

  scaled_variables <- scale(variables_to_scale) 

   

  # Replace the original variables with the scaled ones in the dataframe 

  subset_df[, c("PET", "Vapour_pressure")] <- scaled_variables 

  cols <- names(subset_df) 

  formula <- as.formula(paste("out ~", paste(cols[-1], collapse = " + 

"))) 

   

  # LDA function call 

  lda_result <- lda(formula, data = subset_df) 

   

  # ANOVA function call 
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  anova_result <- aov(formula, data = subset_df) 

  anova_summary <- data.frame(anova(anova_result)) 

   

# Save the results for each disease 

  results_list[[disease]] <- list(lda = lda_result, anova = 

anova_summary) 

} 

 

For each disease, the code subsets the data and standardizes the selected weather variables 

("PET" and "Vapour_pressure") to ensure comparability. It constructs a formula for LDA and ANOVA 

based on all variables in the dataset, then performs LDA and ANOVA. The results are stored in a list 

for each disease, including LDA outputs and ANOVA summaries. 

 

# Create a data.table to store the summary 

summary_dt <- data.table(Disease = character(), 

                         Parameter = character(), 

                         P_Value = numeric()) 

 

# Loop through each disease and parameter to extract relevant information 

for (disease in diseases) { 

 

anova_result <- results_list[[disease]]$anova 

# Extract parameters with p-values < 0.05 

significant_parameters <- anova_result[anova_result$"Pr..F." < 0.05, , 

drop = FALSE] 

if (!is.null(significant_parameters)) { 

summary_dt <- rbindlist(l=list(summary_dt,  

              data.table(Disease = rep(disease,               

nrow(significant_parameters)), 

Parameter = rownames(significant_parameters), 

P_Value = significant_parameters$"Pr..F.")),  

use.names = TRUE, fill = TRUE) 

  } 

} 

 

The code creates an empty data.table to store significant ANOVA results. It iterates through 

each disease’s ANOVA results to extract parameters with p-values less than 0.05, indicating statistical 

significance. These significant results are aggregated into a summary table. 

 

# Save the summary data.table to a CSV file 

fwrite(summary_dt, "ANOVA_Summary.csv", row.names = FALSE) 
 

Finally, the summary table containing significant ANOVA results is saved to a CSV file for further 

review and analysis.  
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11.  DATA COMMUNICATION 

 

I. Email 

 

Effective data communication is crucial for disseminating important information to stakeholders. 

Each month, we send NADRES_V2 Bulletin and methodology reports between 650 to 700 emails to 

principals and co-principal investigators of NADEN Centres, Central and State Veterinary 

Departments, and other relevant stakeholders. These emails are designed to provide timely updates, 

reports, and critical insights regarding livestock health and disease management. By maintaining 

regular communication, we ensure that all parties are informed and can take appropriate actions based 

on the latest data and forecasts. 

 

II. NADRES Website 

 

The NADRES website serves as a central hub for distributing crucial information related to livestock 

disease forewarning. Every month, we upload the Livestock Disease Forewarning Bulletin and 

Livestock Disease Forewarning Methodology to ensure that users have access to the most current and 

accurate data. The website has recently achieved a significant milestone, attracting over 2 million 

visitors, reflecting its importance and the trust placed in it by the veterinary community and other 

stakeholders. This online platform enhances accessibility and ensures that valuable information is 

readily available to those who need it. 

 

III. Mobile Applications 

 

Leveraging mobile technology, we have developed applications to disseminate livestock disease 

information more effectively. These mobile applications provide real-time updates, alerts, and 

comprehensive data on livestock health and disease forecasts. By making this information accessible 

via smartphones, we empower stakeholders, including farmers and veterinary professionals, to make 

informed decisions promptly. This mobile-centric approach ensures wider reach and engagement, 

particularly in remote and rural areas were access to traditional  

 

 

Communication channels might be limited.LDF - Mobile App 
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https://play.google.com/store/apps/details?id=info.androidhive.ldf&hl=en&gl=US&pli=1 

 

Large Language Models 

▪ Farmers can simply voice their queries about diseases, vaccination schedules, or other concerns, 

and receive accurate and contextually relevant responses instantly 

▪ LLMs empower farmers to proactively manage disease prevention and control by offering timely 

guidance on identification, prevention strategies, and vaccination protocols 

 

 

Fig. 11.1. Scientific Integration of Mobile Applications in Livestock Disease Risk Communication 

 

 

 

 

IV.  Disease Risk Communication (in collaboration with FRUITS, NIC, and the Government of 

Karnataka) 

 

In addition to NADRES V2 (The National Animal Disease Referral Expert System), ICAR-NIVEDI 

collaborated with NIC, Govt. of Karnataka, Karnataka State for sending the SMS alerts directly to 

the farmers who have registered in FRUITS (Farmers Registration and Unified Beneficiary 

Information System). The information alerts on risk prediction of livestock diseases were sent through 

SMS to farmers is presented in Table 11.A. During April 2023 to March 2024, a total of 1,22,31,000 

SMS alerts were sent to farmers. 

 

 

https://play.google.com/store/apps/details?id=info.androidhive.ldf&hl=en&gl=US&pli=1
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Fig. 11.2. FRUITS Sending Website and Operational Steps 

 

 

 

▪ Farmers in Karnataka were informed of disease risks via SMS notifications. 

▪ A total of 1,22,31,000 SMS notifications were sent between April 2023 to March 2024. 

 

▪ The notifications covered various animal diseases such as Anthrax, Babesiosis, Black 

Quarter, Fasciolosis, FMD, Theileriosis, and Trypanosomiasis. 

▪ The SMS notifications were facilitated through the IT, FRUITS a web program of NIC, 

Government of Karnataka. 

 

 

 

 

 

 

 
 

Table 11.A. Farmer Registration and Unified beneficiary Information System (FRUITS) 
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V. DLT provision 

 

Distributed Ledger Technology (DLT) has been implemented to optimize communication processes, 

enhancing the efficiency of disseminating information and delivering updates related to livestock 

disease risk management. 

 

 

VI.  Post-prediction validation  

 

Post-prediction validation is a crucial process in evaluating the accuracy and reliability of predictive 

models. This involves comparing the model's forecasts against actual outcomes using various sources 

such as scientific publications and ProMED reports. By systematically validating predictions, 

researchers can identify discrepancies, refine models, and enhance their predictive performance for 

future applications. 

 

I. PPR reported in the month of January 2024 in Dehradun district of Uttarakhand  

 

January 2024 ProMED report on Peste des Petits Ruminants (PPR) livestock disease aligns with our 

November 2023 report of predicting high-risk for January 2024, enhancing forecast accuracy and 

underscoring the imperative for proactive disease prevention measures. 
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II.  Hemorrhagic Septicemia Reported in Ludhiana District, Punjab, in April 2024 

 

The April 2024 ProMED report on Hemorrhagic Septicemia (HS) in livestock in Ludhiana District, 

Punjab, corroborates our February 2024 forecast predicting a high risk of HS for April 2024. This 

alignment between observed disease incidence and our predictive model enhances the accuracy of 

our forecasts and underscores the critical need for proactive disease prevention measures. 

 

 

 

 

III. PPR reported in the month of April 2024 in Kollam district of Kerala 

 

The April 2024 ProMED report on Peste des Petits Ruminants (PPR) in Kollam District, which is 

adjacent to the previously identified high-risk area, corroborates our January 2024 forecast predicting 

a high risk of PPR for March 2024. This alignment of observed data with our predictions enhances 

forecast accuracy and underscores the necessity for proactive disease prevention measures. The 

congruence between reported incidence and forecasted risk highlights the robustness of our predictive 

model and reinforces the need for timely, targeted interventions to mitigate disease spread. 
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IV. Foot and Mouth Disease Reported in March 2024 in Pilibhit District, Uttar Pradesh, 

Adjacent to Budaun District 

 

The March 2024 ProMED report on Foot and Mouth Disease (FMD) in Pilibhit District a neighboring 

district to Badaun District corroborates our January 2024 high-risk prediction for March 2024. This 

alignment of risk forecasts underscores the accuracy of our predictive models and highlights the 

critical need for proactive disease prevention measures. The concurrence between the observed 

disease incidence and our forecasted risk emphasizes the efficacy of our forecasting methodology and 

reinforces the importance of timely interventions to mitigate disease spread. 
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APPENDIX 

Abbreviations 

 
NADRE         :      National Animal Disease Referral Expert System 

R                    :      R environment for statistical computing 

ASF                :     African Swine Fever 

BQ                   :      Black Quarter 

BT                    :       Blue Tongue 

CSF                  :       Classical Swine Fever 

ET                  :       Enterotoxaemia 

FS                   :       Fasciolosis 

FMD              :       Foot and Mouth disease 

HS                  :       Haemorrhagic Septicaemia 

PPR                :       Peste des Petits Ruminants 

SGP                :       Sheep and Goat pox 

hPa                   :       Hectopascals 

NR                    :        No risk/ No data available 

VLR                 :        Very low risk 

LR                    :        Low risk 

MR                   :        Moderate risk 

HR                   :        High risk 

VHR                :        Very high risk 
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