

## भाकृअनुप-राष्ट्रीयपशुरोगजानपदिकएवंसूचनाविज्ञानसंस्थान

ICAR-National Institute of Veterinary Epidemiology and Disease Informatics रामगोंडनहल्ली, येलहंका, बेंगलुरू – ५६० ११९, भारत

Ramagondanahalli, Post Box No. 6450, Yelahanka, Bengaluru - 560 119, INDIA



# NATIONAL ANIMAL DISEASES REFERRAL EXPERT SYSTEM -INTEGRATING DATA-DRIVEN DISEASE SURVEILLANCE AND PREDICTIVE ANALYTICS FOR LIVE-STOCK DISEASES (NADRES V2)

## Artificial Intelligence/Machine Learning-Based Surveillance Model Development

Passive Surveillance model

Not sample based only opportunistic model

Event-based Surveillance model

 Host factors acts as signal/source early detection of outbreaks

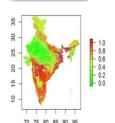
Risk-based Surveillance model  Risk other than host such as ecological, environment, trade etc., by risk based probability sampling method

Active surveillance model

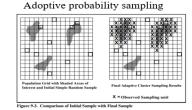
 Systematic or regular recording of cases of a designated disease or a group of diseases by probability sampling method

Environmental Surveillance model

 Non-invasive method of surveillance that involves the collection of environmental samples by advanced probability sampling methods







PDDES <a href="https://nivedi.res.in/PDDES/">https://nivedi.res.in/PDDES/</a>



CaDDES
https://nivedi.res.in/nicra/



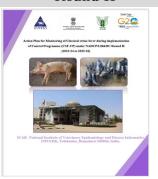
https://www.nivedi.res.in/Nadres v2/



#### FMD Seromonitoring Round V



States & UTs: 36 Districts: 851 Blocks: 2085 Villages:2823 Samples: 38272


## oring



**FMD Serosurveillance** 

States & UTs: 36
Districts: 761
Blocks: 4012
Villages:8288
Samples: 119059

#### CSF CP Seromonitoring Round II



States & UTs: 28 Districts: 467 Blocks: 1363 Villages:2561 Samples: 32760

#### Brucellosis Seromonitoring Phase II



States & UTs: 35 Districts:697 Blocks: 2291 Villages:3528 Samples:46398

### Sampling Plan tab under NADRES Website

### Schematic representation of Two-stage stratified random sampling and formula

#### **National Animal Disease Referral** Expert System (NADRES v2)



Home About Us Risk Factors Analytics Livestock Diseases Post Predi<u>ction Validation Contact</u>

ND KARNATAKA KE RALA, MANIPUR, ME GHALAYA,ODISHA RAJASTHAN, TRIPI RA,WEST BENGAL

predicted for likely occurrence of Foo 2025

PRADESH.ASSAM.G UJARAT JHARKHAN D,KARNATAKA,KER ALA MAHARASHTE A.MANIPUR,NAGAL

#### Sampling Plan for Strengthening Livestock Disease Surveillance

The early detection of disease epidemics reduces the chances of introduction into new locales minimizes the number of infections, and reduces the financial impact. The effectiveness of disease control measures often depends on early detection of disease incidence or outbreak and significantly reduces the cost associated with disease eradication and devastation of livestock.

Passive surveillance methods are the voluntary reporting of cases by primary care providers and farmers to the veterinary health system whereas active surveillance of livestock diseases involves periodic sampling by veterinary health officials. Active surveillance methods are often more effective for targeted objectives than passive methods. Developing an optimal sampling strategy for surveillance of livestock diseases is important for early detection and effective resource utilization

### **FMD Sero-Monitorine**

- 🗎 1. Round I (2020)
- 2. Round II (2021)
- 🗎 3. FMD-Seromonitoring Round III (2022) complete plan with SOP

Download Statewise Seromonitoring Sampling Plan-2022 (Round-III)





# Shivamogga

Adagodi

8 Animal samples need

to be collected from 6

Karnataka



#### LH-DCP Portal: Cloud-Based Digital Platform for Active Livestock **Disease Surveillance and Control**

https://nivedi.res.in/Nadres v2/lhdcp/index

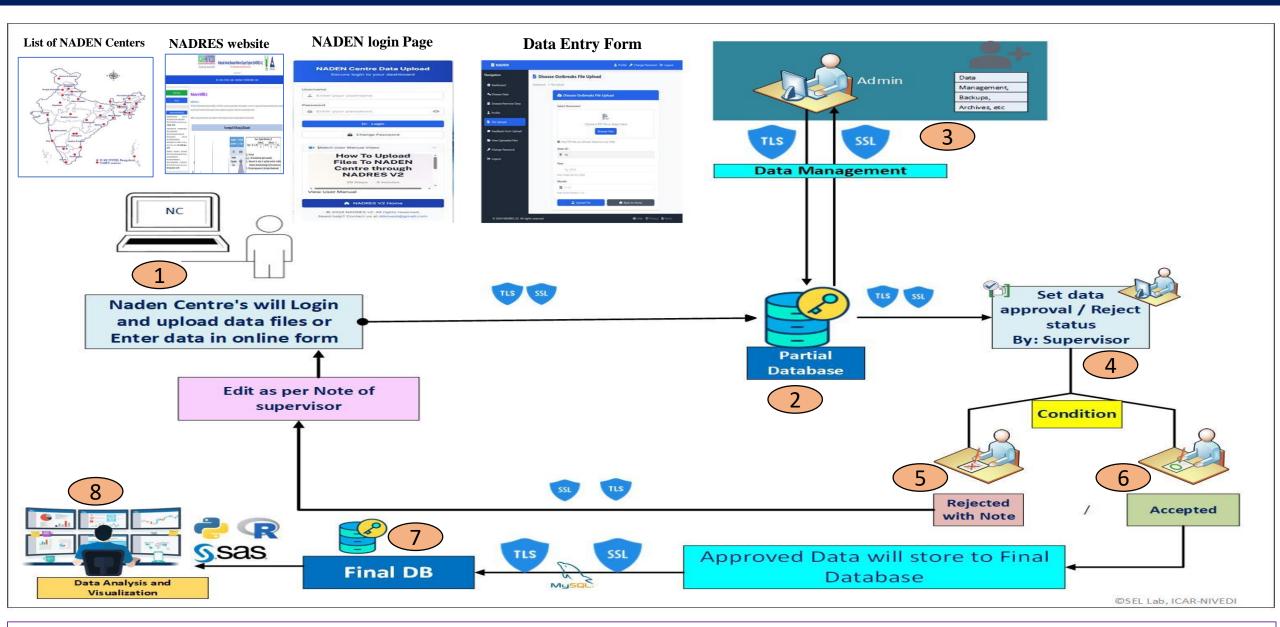


## **Home Page**

## **Disease Dashboard**

## **Data Requirements Specifications (DRS**

| DRS of Brucellosis Seromonitoring Phase III - 2023 |                   |            |                   |                 |                 |                   | Results          |         | Brucellosis Seromonitoring Phase IV - 2024 |           |          | 2024                |            |                   |                 |                 |                   |                  |
|----------------------------------------------------|-------------------|------------|-------------------|-----------------|-----------------|-------------------|------------------|---------|--------------------------------------------|-----------|----------|---------------------|------------|-------------------|-----------------|-----------------|-------------------|------------------|
| State<br>id                                        | State             | Prevalence | Cluste<br>r Level | Sensitivit<br>y | Specifi<br>city | No of<br>Villages | No of<br>Animals | Phase-I | Phase-II                                   | Phase-III | Average  | Protection<br>Level | Prevalence | Cluste<br>r Level | Sensiti<br>vity | Specifi<br>city | No of<br>Villages | No of<br>Animals |
| 1                                                  | Andaman & Nicobar | 0.2        | 0.048             | 0.9             | 0.9             | 68                | 589              |         |                                            |           | 80.23667 | 32.094667           | 0.32       | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 2                                                  | Andhra Pradesh    | 0.2        | 0.024             | 0.9             | 0.9             | 138               | 1794             | 73.25   | 71.51                                      | 64.52     | 69.76    | 27.904              | 0.28       | 0.04              | 0.9             | 0.9             | 82                | 1066             |
| 3                                                  | Arunachal Pradesh | 0.2        | 0.43              | 0.9             | 0.9             | 75                | 810              |         |                                            |           | 45.52    | 18.208              | 0.18       | 0.02              | 0.9             | 0.9             | 122               | 1830             |
| 4                                                  | Assam             | 0.2        | 0.022             | 0.9             | 0.9             | 150               | 1950             |         | 75.67                                      | 50.76     | 63.215   | 25.286              | 0.25       | 0.03              | 0.9             | 0.9             | 110               | 1210             |
|                                                    | Bihar             | 0.2        | 0.02              | 0.9             | 0.9             | 165               | 2145             |         | 59.93                                      |           | 59.93    | 23.972              | 0.24       | 0.03              | 0.9             | 0.9             | 91                | 1092             |
| 6                                                  | chandigarh        | 0.2        | 0.2               | 0.9             | 0.9             | 16                | 193              | 99.49   | 68.68                                      | 72.54     | 80.23667 | 32.094667           | 0.32       | 0.04              | 0.9             | 0.9             | 82                | 656              |
| 7                                                  | Chhattisgarh      | 0.2        | 0.027             | 0.9             | 0.9             | 122               | 1586             | 78.63   | 69.07                                      |           | 73.85    | 29.54               | 0.3        | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 8                                                  | Diu and daman     | 0.2        | 0.17              | 0.9             | 0.9             | 18                | 195              | 80.76   |                                            |           | 80.76    | 32.304              | 0.32       | 0.04              | 0.9             | 0.9             | 82                | 656              |
| 9                                                  | Delhi             | 0.2        | 0.11              | 0.9             | 0.9             | 29                | 334              | 89.47   | 84.17                                      |           | 86.82    | 34.728              | 0.35       | 0.05              | 0.9             | 0.9             | 66                | 528              |
| 10                                                 | Goa               | 0.2        | 0.04              | 0.9             | 0.9             | 83                | 916              | 92.12   | 94.8                                       |           | 93.46    | 37.384              | 0.37       | 0.05              | 0.9             | 0.9             | 66                | 462              |
| 11                                                 | Gujarat           | 0.2        | 0.024             | 0.9             | 0.9             | 138               | 1794             | 80.12   |                                            |           | 80.12    | 32.048              | 0.32       | 0.04              | 0.9             | 0.9             | 82                | 656              |
| 12                                                 | Haryana           | 0.2        | 0.031             | 0.9             | 0.9             | 106               | 1378             | 66.84   | 66                                         | 72.3      | 68.38    | 27.352              | 0.27       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 13                                                 | Himachal Pradesh  | 0.2        | 0.033             | 0.9             | 0.9             | 99                | 1081             | 81.64   | 66.36                                      |           | 74       | 29.6                | 0.3        | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 14                                                 | Jammu and Kashmir | 0.2        | 0.039             | 0.9             | 0.9             | 84                | 1092             | 73.31   |                                            |           | 73.31    | 29.324              | 0.29       | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 15                                                 | Jharkhand         | 0.2        | 0.028             | 0.9             | 0.9             | 118               | 1534             | 73.95   | 42.41                                      |           | 58.18    | 23.272              | 0.23       | 0.03              | 0.9             | 0.9             | 110               | 1320             |
| 16                                                 | Kamataka          | 0.2        | 0.026             | 0.9             | 0.9             | 127               | 1651             | 96.67   | 70.47                                      | 53        | 73.38    | 29.352              | 0.29       | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 17                                                 | Kerala            | 0.2        | 0.036             | 0.9             | 0.9             | 96                | 1020             | 68.78   | 48.64                                      |           | 58.71    | 23.484              | 0.23       | 0.03              | 0.9             | 0.9             | 110               | 1320             |
| 18                                                 | Ladakh            | 0.2        | 0.085             | 0.9             | 0.9             | 34                | 394              | 80.18   | 76.48                                      |           | 78.33    | 31.332              | 0.31       | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 19                                                 | Madhya Pradesh    | 0.2        | 0.024             | 0.9             | 0.9             | 137               | 1781             | 59.43   | 39.02                                      |           | 49.225   | 19.69               | 0.2        | 0.03              | 0.9             | 0.9             | 165               | 2310             |
| 20                                                 | Maharashtra       | 0.2        | 0.027             | 0.9             | 0.9             | 121               | 1435             |         | 60.82                                      |           | 60.82    | 24.328              | 0.24       | 0.03              | 0.9             | 0.9             | 110               | 1210             |
| 21                                                 | Manipur           | 0.2        | 0.026             | 0.9             | 0.9             | 126               | 1381             | 85.66   |                                            |           | 85.66    | 34.264              | 0.34       | 0.05              | 0.9             | 0.9             | 66                | 528              |
| 22                                                 | Meghalaya         | 0.2        | 0.038             | 0.9             | 0.9             | 87                | 978              | 45.52   |                                            |           | 45.52    | 18.208              | 0.18       | 0.02              | 0.9             | 0.9             | 165               | 2475             |
| 23                                                 | Mizoram           | 0.2        | 0.033             | 0.9             | 0.9             | 100               | 733              | 89.36   |                                            |           | 89.36    | 35.744              | 0.36       | 0.05              | 0.9             | 0.9             | 66                | 528              |
| 24                                                 | Nagaland          | 0.2        | 0.033             | 0.9             | 0.9             | 99                | 693              |         |                                            |           | 68.38    | 27.352              | 0.27       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 25                                                 | Odisha            | 0.2        | 0.031             | 0.9             | 0.9             | 105               | 1217             | 70.91   | 65.9                                       | 90.95     | 75.92    | 30.368              | 0.3        | 0.04              | 0.9             | 0.9             | 82                | 738              |
| 26                                                 | Puducherry        | 0.2        | 0.043             | 0.9             | 0.9             | 76                | 803              |         |                                            |           | 84.81    | 33.924              | 0.34       | 0.05              | 0.9             | 0.9             | 66                | 594              |
| 27                                                 | Punjab            | 0.2        | 0.031             | 0.9             | 0.9             | 105               | 1365             |         |                                            |           | 68.38    | 27.352              | 0.27       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 28                                                 | Rajasthan         | 0.2        | 0.043             | 0.9             | 0.9             | 76                | 988              |         |                                            |           | 68.38    | 27.352              | 0.27       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 29                                                 | Sikkim            | 0.2        | 0.031             | 0.9             | 0.9             | 105               | 1288             | 86.74   | 62.17                                      | 52.03     | 66.98    | 26.792              | 0.27       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 30                                                 | Tamilnadu         | 0.2        | 0.026             | 0.9             | 0.9             | 126               | 1638             | 88.03   | 77.75                                      | 88.65     | 84.81    | 33.924              | 0.34       | 0.04              | 0.9             | 0.9             | 66                | 528              |
| 31                                                 | Telangana         | 0.2        | 0.024             | 0.9             | 0.9             | 138               | 1794             | 70.76   | 70.71                                      |           | 70.735   | 28.294              | 0.28       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 32                                                 | Tripura           | 0.2        | 0.036             | 0.9             | 0.9             | 91                | 1183             |         |                                            |           | 45.52    | 18.208              | 0.18       | 0.02              | 0.9             | 0.9             | 122               | 1830             |
| 33                                                 | Uttarakhand       | 0.2        | 0.031             | 0.9             | 0.9             | 105               | 1191             | 64.8    |                                            |           | 64.8     | 25.92               | 0.26       | 0.03              | 0.9             | 0.9             | 110               | 1210             |
| 34                                                 | Uttar Pradesh     | 0.2        | 0.026             | 0.9             | 0.9             | 127               | 1651             | 71.96   |                                            |           | 71.96    | 28.784              | 0.29       | 0.04              | 0.9             | 0.9             | 82                | 820              |
| 35                                                 | West Bengal       | 0.2        | 0.024             | 0.9             | 0.9             | 138               | 1794             | 86.03   |                                            |           | 86.03    | 34.412              | 0.34       | 0.05              | 0.9             | 0.9             | 66                | 528              |
|                                                    | TOTAL             |            |                   |                 |                 | 3528              | 42369            | 76.47   | 63.05                                      | 66.24     | 2485.49  |                     |            |                   |                 |                 | 3153              | 33443            |


| Sample ID             | District_Name | Block_Name | Village_Name                    | Buffaloes | Cattle | Cattle + Buffalo | Number of units to sample | Buffalo<br>Proportion | Cattle Proportion | Probability Value |
|-----------------------|---------------|------------|---------------------------------|-----------|--------|------------------|---------------------------|-----------------------|-------------------|-------------------|
| pachmu(1621-<br>1630) | Palakkad      | Chittur    | Muthalamada(GP)<br>ÔÇôWardNo.9  | 0         | 862    | 862              | 10                        | 0                     | 10                | 6.20E-07          |
| pamash(1631-<br>1640) | Palakkad      | Mailiarkau | Sholayur(GP)ÔÇô<br>WardNo.14    | 3         | 924    | 929              | 10                        | 0                     | 10                | 5.75E-07          |
| pamash(1641-<br>1650) | Palakkad      | Mannarkad  | Sholayur(GP)ÔÇô<br>WardNo.6     | 0         | 962    | 962              | 10                        | 0                     | 10                | 5.55E-07          |
| pachmu(#)             | Palakkad*     | Chittur    | Muthalamada(GP<br>)ÔÇôWardNo.10 |           | 1061   | 1115             | 10                        | 0                     | 10                | 4.79E-07          |
|                       |               |            | Total                           | 2634      | 53344  | 55978            | 1660                      | 66                    | 1594              | 0.000295694       |

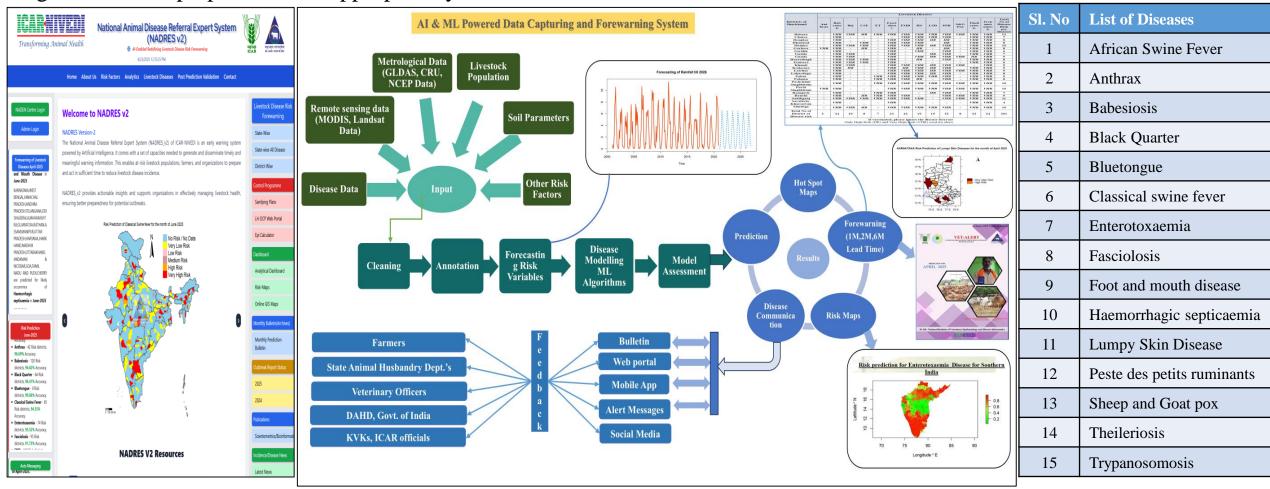
\*Reserved villages to be used for sampling if any selected village in a given district is not accessible, has logistic problem or any other issues; #The replaced village Sample Numbers are used with the reserved village sample IDs, i.e., if a village with sample id chngng(1015-1027) is replaced with the reserved village then the sample id is replaced with the reserved village id and the sample numbers are same as of replaced village (



Approximately 5,39,535 samples are allocated annually across India for monitoring and surveillance of four prioritized animal diseases (FMD, Brucellosis, PPR, and CSF) supporting nationwide disease tracking and control initiatives.

## Real time/Near Real time Data Capture and Storage Workflow: NADRES V2 Database Flow Diagram




Epidemiological data were compiled at the state, district and village levels from multiple sources, and a subsample of cases was confirmed in the laboratory; the dataset includes information on susceptible populations, attack rates and outbreak-associated mortality

## Livestock Disease Risk Forewarning Through AI & ML Based Disease Modelling

## NADRES V2-NATIONAL ANIMAL DISEASE REFERRAL EXPERT SYSTEM

## https://nivedi.res.in/Nadres\_v2/index.php

NADRES v2 is an early warning system powered by Artificial Intelligence with set of capacities needed to generate and disseminate timely and meaningful warning information that enables at-risk livestock population, and guide the farmers and organizations to prepare and act appropriately and in sufficient time to reduce the livestock disease incidence.



## Real Time Climatic Factors used for Forecasting, Forewarning and Developing Risk maps

## **Livestock Population**

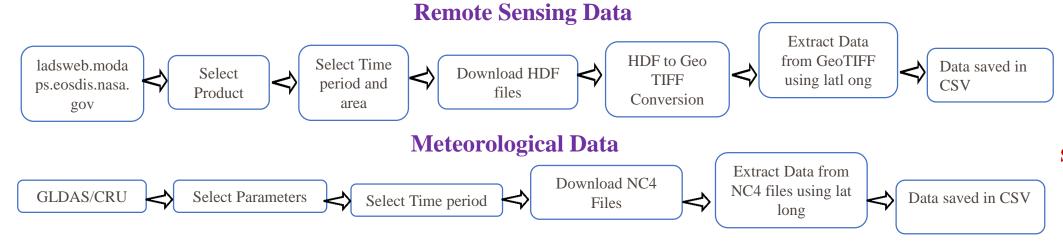
| Livestock data (Numbers)                             |              |  |  |  |  |  |
|------------------------------------------------------|--------------|--|--|--|--|--|
| Cattle                                               | 19,63,79,000 |  |  |  |  |  |
| Buffalo                                              | 11,04,24,984 |  |  |  |  |  |
| Sheep                                                | 15,01,13,442 |  |  |  |  |  |
| Goat                                                 | 7,32,94,702  |  |  |  |  |  |
| Pig                                                  | 92,94,830    |  |  |  |  |  |
| Villages-664369                                      |              |  |  |  |  |  |
| Blocks-5564                                          |              |  |  |  |  |  |
| Source: 20 <sup>Th</sup> Livestock census, DAHD, GoI |              |  |  |  |  |  |

## **Remote Sensing**

| Remote sensing                                                                               | Units                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
| LST                                                                                          | °C                                             |  |  |  |  |  |  |  |
| NDVI & EVI                                                                                   | -1 to 1                                        |  |  |  |  |  |  |  |
| PET                                                                                          | mm                                             |  |  |  |  |  |  |  |
| LAI                                                                                          | $m^2/m^2$                                      |  |  |  |  |  |  |  |
| LST<br>Resolution: 1km                                                                       | NDVI &EVI,<br>PET, LAI<br>Resolution:500<br>m. |  |  |  |  |  |  |  |
| Source:<br>https://ladsweb.modaps.eosdis.nasa.g<br>ov/<br>https://search.earthdata.nasa.gov/ |                                                |  |  |  |  |  |  |  |

## Meteorological

| Meteorological                                                                                    | Units             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
| Air Temperature                                                                                   | k                 |  |  |  |  |  |
| Potential Evaporation<br>Rate                                                                     | w/m <sup>2</sup>  |  |  |  |  |  |
| Rainfall                                                                                          | kg/m²/s           |  |  |  |  |  |
| Soil Moisture                                                                                     | kg/m <sup>2</sup> |  |  |  |  |  |
| Specific Humidity                                                                                 | kg/kg             |  |  |  |  |  |
| Surface Pressure                                                                                  | Pa                |  |  |  |  |  |
| Wind Speed                                                                                        | m/s               |  |  |  |  |  |
| Source:<br>https://disc.gsfc.nasa.gov/datasets/GLD<br>AS_NOAH025_M_2.1/summary?key<br>words=GLDAS |                   |  |  |  |  |  |
| Resolution: 0.25 * 0.25                                                                           | degree            |  |  |  |  |  |


| Meteorological    | Units |
|-------------------|-------|
| Cloud Cover       | %     |
| Relative Humidity | %     |
| Temperature       | °C    |
| Temperature Max   | °C    |
| Temperature Min   | °C    |
| Vapour Pressure   | hPa   |
| Wet dry Frequency | days  |
| Source:           |       |

https://crudata.uea.ac.uk/cru/data/hrg/cru ts 4.05/cruts.2103051243.v4.05/

Resolution: 0.5 degree

**Delta Weather Parameters:** Represents the difference between two corresponding values, typically between two time periods, to capture changes or trends. **Static Set:** Long-term deltas (2001–2021) showing climatic trends affecting disease patterns.

**Dynamic Set:** Recent deltas (2018–2023 averages) capturing ongoing weather changes for short-term forecasting.



Seven step approach used for risk Prediction

Secondary

infection(R0)

**Spatial** Endemicity

Auto Correlation

Linear Discrimina nt Analysis

Temporal Endemicity

Space Time

Cluster

Risk Modelling

Maps

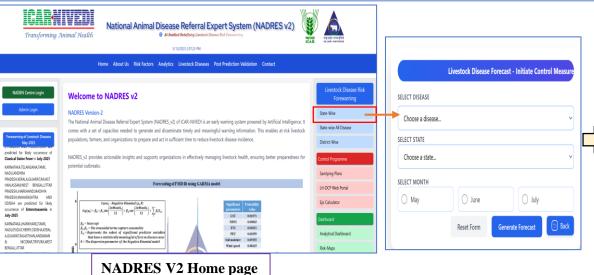
## **Machine Learning Model Building and evaluation**

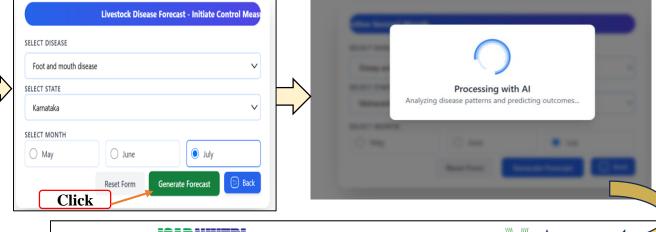
## **Model Selection Criteria**

- Akaike information criterion (AIC)
- Bayesian information criterion (BIC)
- Bridge criterion (BCCross-validation
- Deviance information criterion (DIC),
- Likelihood-ratio test
- Mallows's Cp
- Minimum description length
- Minimum message length (MML)
- PRESS statistics
- Stepwise regression

## 1. Generalized Linear Model(GLM)

- 2. Generalized Additive Model (GAM)
- 3. Random Forest (RF)
- 4. Kernal Support Vector Machine (KSVM)
- 5. Boosted Regression Tree (BRT)
- 6. Artificial Neural Networks (NN)
- 7. Multiple Adaptive Regression Splines (MARS)
- 8. Flexible Discriminant Analysis (FDA)
- 9. Classification Tree Analysis (CTA)
- 10. Support Vector Machine (SVM)
- 11. Decision Trees (Tree\_prob)
- 12. Least Absolute Shrinkage and Selection Operator (Lasso)
- 13. Gaussian Process (GP)
- 14. Neural Network (NN)
- 15. Cubiset
- 16. Probit Regression
- 17. Elastic Net
- 18. Adaptive Boosting
- Ridge Regression
- 20. Conditional Random Forest


## **Presently used Indices For Model Evaluation**

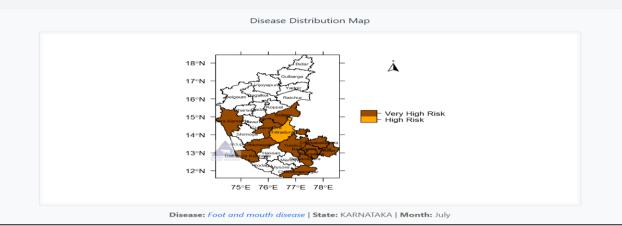

- 1. KAPPA
- 2. ROC
- 3. TSS
- 4. Accuracy
- 5. Error Rate
- 6. Precession
- 7. Sensitivity
- 8. Specificity
- 9. F1 Score
- 10. Log loss
- 11. Gini Coefficient
- 12. RMSE
- 13. MAE



NADRESv2 Monthly Bulletin Cover page

## Interactive Visualization of AI-Based Disease Predictions: State, Disease and Month-Specific Insights in NADRES V2





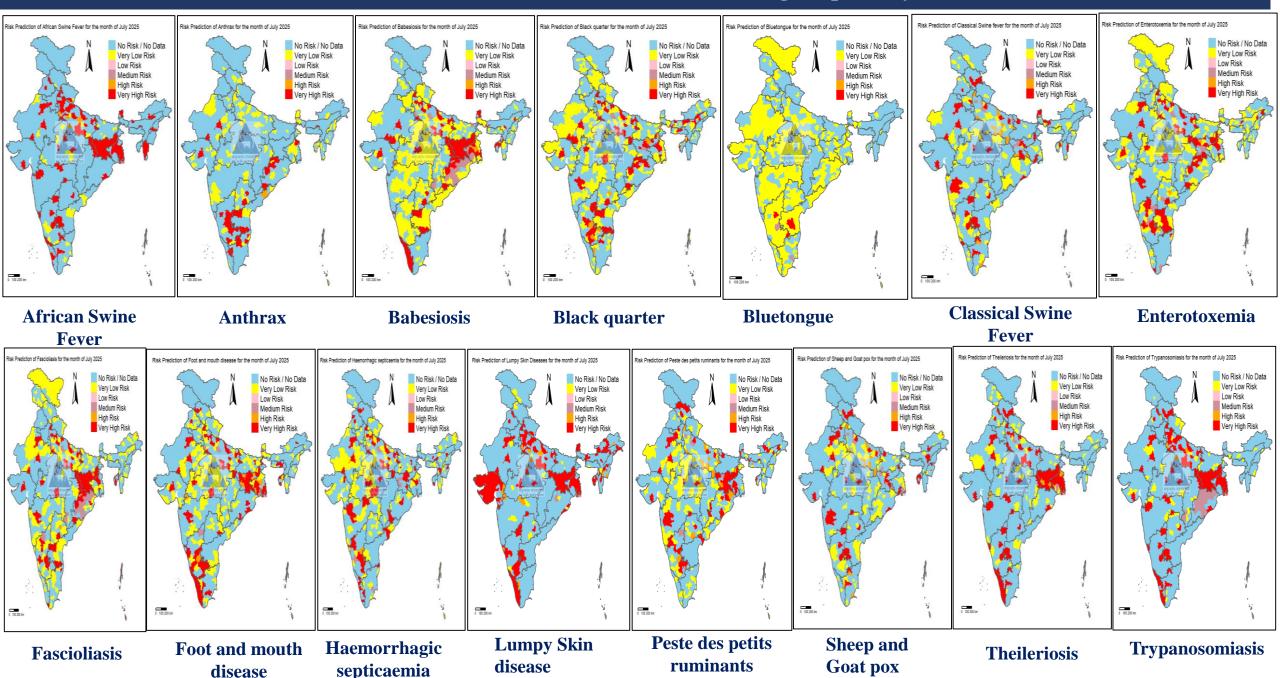

#### Foot-and-Mouth Disease (FMD)

#### **Preventive Measures:**

- Ring vaccination within an 8 km radius using appropriate vaccines for circulating serotypes (O, A, Asia-1).
- Strict movement control of livestock must be enforced during outbreaks.
- Quarantine measures should be implemented for newly introduced animals.
- Animals aged four months and older should receive biannual vaccinations to maintain immunity.
- Infected animals should be immediately isolated, as their excretions and secretions contain the virus.
- All feed and fodder in contact with infected animals should be discarded.

If vaccinated, please ignore the disease forecast.




# Transforming Animal Health National Animal Disease Referral Expert System (NADRES v2)

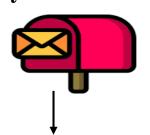
Home About Us Risk Factors Analytics Livestock Diseases Post Prediction Validation Contact

#### Foot and mouth disease Livestock Disease Forecast for the July Month in KARNATAKA

| District Name    | Cattle | Buffalo | Goat   | Sheep   | Pig   | Month | Result         |
|------------------|--------|---------|--------|---------|-------|-------|----------------|
| Bangalore Rural  | 170722 | 16924   | 95156  | 118788  | 14131 | July  | Very High Risk |
| Bangalore        | 153861 | 11168   | 62464  | 82873   | 28046 | July  | Very High Risk |
| Bellary          | 283699 | 127407  | 253119 | 1005565 | 15094 | July  | Very High Risk |
| Chikmagalur      | 290007 | 34362   | 41040  | 97962   | 1423  | July  | Very High Risk |
| Davanagere       | 297377 | 123596  | 124542 | 505630  | 2418  | July  | Very High Risk |
| Tumkur           | 431251 | 142047  | 427926 | 1290008 | 5956  | July  | Very High Risk |
| Ultara Kannada   | 336312 | 73993   | 10655  | 8537    | 1193  | July  | Very High Risk |
| Chikkaballapura  | 213815 | 26397   | 188392 | 613193  | 2481  | July  | Very High Risk |
| Ramanagara       | 287502 | 19644   | 150130 | 127988  | 7102  | July  | Very High Risk |
| Chamarajanagar   | 249361 | 9918    | 144633 | 135321  | 1572  | July  | Very High Risk |
| Dakshina Kannada | 250569 | 1832    | 32215  | 289     | 6359  | July  | Very High Risk |
| Kolar            | 209642 | 26520   | 93713  | 483892  | 5292  | July  | Very High Risk |
| Chitradurga      | 225603 | 113304  | 385058 | 1352087 | 2177  | July  | High Risk      |
| Gulbarga         | 385580 | 73176   | 446200 | 112387  | 44221 | July  | Medium Risk    |

## **Risk Prediction - Livestock Disease Forewarning Maps (May-2025)**




## **End to End Risk Communications**

## Monthly Forecasting of 15 Livestock Diseases (Based on AI and ML models) Dissemination to all Stakeholders



Hard Copy (Vetalert, Livestock Diseases Risk Forewarning Bulletin)

**Dissemination** by Post



**DAHD** and

**ICAR** officials

Soft copy (Vet-alert, Livestock Diseases Risk Forewarning Bulletin) Via emails



State Veterinary Officials(52), KVKS (731), NADEN centers (55 Including PI &Co-PI) LDF & NER LDF Mobile application



Real time access by field users (100+ Users)

✓ Veterinary nodal officers use the system to create data-driven sampling plans for targeted surveillance.

**NADRES** Website



https://nivedi.res.in/Nadres v2/index.php

Total Visitors: 26.7 Lakh Individuals (as of latest update) Fruits SMS alerts to registered farmers



- ✓ 25.7 lakh SMS alerts were sent to farmers in April 2025.
- ✓ 23.3 million SMS alerts disseminated via FRUITS (Apr 2024–Mar 2025).

DLT SMS to Veterinary Doctors



- ✓ 17,954 SMS alerts sent to veterinarians in April 2025.
- ✓ 1.09 lakh SMS alerts sent to vets from Sep 2024 to Mar 2025.

Social Media Platforms

X (Twitter) https://x.com/dilnivedi/s tatus/1888899265411645 536

LinkedIn

https://www.linkedin.co m/feed/update/urn:li:sh are:72946673718294364 17/

Instagram

https://www.instagram.c om/p/DF5DkqqymcW/?i gsh=N2NvZXR5cHp3cX dj

YouTube:

https://www.youtube.co m/@icar-nivedi

GitHub:

https://github.com/SEL-NIVEDI/

Facebook

https://www.facebook.co m/icarnivediofficial/



**Informed Farming Community & Veterinary Authorities** 

- Early Response
- Risk Mitigation
- Animal Health Protection

## Operational Scale & Response Time Optimization in NADRES V2 via AI/ML Automation

## **Data Inputs for Monthly Livestock Disease Forecasting**

- ✓ Total Livestock Population & Animal Species Covered: 540 million animals (Cattle, Buffalo, Sheep, Goat, and Pig)
- ✓ **Disease Surveillance Network**: Data collected from 35 NADEN (National Animal Disease Epidemiology Network) Centers

## WhatsApp NADEN Group



- ✓ Number of States & Districts Covered: 36 States & UTs, 755 Districts
- ✓ **Number of Target Diseases**: **15** economically important livestock diseases
- ✓ Climatic Parameters: 18 key weather and climate variables considered
- ✓ **Remote Sensing Variables**: 5 variables derived from satellite and geospatial data
- ✓ **Delta Variables**: 23 variables capturing changes in climatic trends over time
- ✓ Forecasting Models: 20 predictive models used for analysis
- ✓ **Indices**: 13 indices to support decision-making and interpretation

## **Operational Scale**

| Sl.<br>No. | AI & ML-Driven<br>Operation | Volume of Operations for One year                                                                                                                                                                                   |  |  |  |  |  |  |
|------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1          | Data Capturing              | 2,08,380 records(disease data, key risk factors)                                                                                                                                                                    |  |  |  |  |  |  |
| 2          | Data Alignment              | 7,61,046 records (additional 23 delta variables)                                                                                                                                                                    |  |  |  |  |  |  |
| 3          | Disease Modelling           | Forecasting 15 livestock diseases, over 12 months using 20 models and 13 performance indices across 755 districts and 15 agro climatic zones in India requires approximately <b>530 million operations per time</b> |  |  |  |  |  |  |
| 4          | Risk Communication          | 25 lakh SMS alerts to farmers in 1 year; 17 to 18 thousand DLT SMS alerts to veterinary officials every month                                                                                                       |  |  |  |  |  |  |

# Optimized Response Time in NADRES Through AI/ML Automation for Each month

| Process                     | Before<br>Automation | After<br>Automation       | Improvement             |
|-----------------------------|----------------------|---------------------------|-------------------------|
| Data Collection + Cleaning  | 10–14 days           | < 48 hours                | ~90% time saved         |
| Forecasting & Modeling      | 7–10 days            | < 10 hours                | ~95% faster             |
| Report Preparation          | 10 – 15 days         | < 3 days                  | ~90% time saved         |
| Alert Generation            | Manual dispatch      | Instant multi-<br>channel | Real-time communication |
| <b>Total Response Cycle</b> | 18–24 days           | < 6 days                  | faster response time    |

- Fully automated pipeline powered by **AI and ML**, Covers the entire workflow from data acquisition through to district-level risk alerts
- Over **2,346** lines of **R code** implemented across data capture, processing, and modeling stages to automate the NADRES V2 pipeline. ( <a href="https://nivedi.res.in/Nadres\_v2/">https://nivedi.res.in/Nadres\_v2/</a>)
- ✓ Nearly **250** CPU hours per month devoted to continuous model execution and risk forecasting.

## NADRES V2: Future Scalability & Strategic Collaborations for Precision Livestock Disease Forecasting

## **Scalability Opportunities**

- ✓ **Micro-Level Forecasting**: Expansion from district to **block and village levels**, enabling hyper-localized risk predictions tailored to specific livestock practices and microclimates.
- ✓ **Model and Disease Expansion:** The number of forecasted livestock diseases is projected to increase to 20–30, with a parallel rise in machine learning models to approximately 25–30, improving prediction specificity and robustness.
- ✓ **Offline Accessibility**: Deployment of AI/ML models on mobile devices with **offline capabilities** for remote areas with poor internet.
- ✓ **Multi-Language & Voice Support**: Integration of **AI-driven voice alerts**, SMS, IVR, and community radio in **regional languages** for inclusive communication.

## **Strategic Collaborations**

- ✓ NICRA (ICAR): Leveraging agro-climatic data to enhance prediction accuracy under climate variability (floods, droughts).
- ✓ **IMD Integration:** Real-time meteorological data and **farmer details** across India are integrated to enhance the prediction of climatesensitive and vector-borne diseases and to enable timely dissemination of alerts to farmers
- ✓ Government Platforms: Seamless integration with NDLM, BSNL, and Digital India initiatives for unified data exchange and delivery.

AI & ML Adaptability: Dynamic model recalibration using real-time feedback and new climate-disease relationships.

### **Community-Centric Risk Communication**

- ✓ **Global Inter** Engaging **village cooperatives** and **extension workers** as grassroots communication hubs.
- ✓ Dissemination through **SMS**, **IVR**, **local radio**, and **mobile-based tools** to reach digitally underserved areas.
- ✓ We will also **expand SMS alerts to farmers in their local or vernacular languages**, ensuring better understanding and adoption.

#### **Global Interest**

✓ FAO experts organized a workshop on community-based early disease detection and reporting systems, and invited the NADRES V2 team to explore expanding its implementation at the community level.

## Officials were oriented on the NADRES V2 workflow during their visit to the SEL Lab








#### **Web Audit Certificate**

The website is currently under evaluation by the Standards and Quality Compliance Lab (STQCL) for adherence to GIGW guidelines









atul chaturvedi @atulichaturvedi: 1h ICAR-NIVEDI is doing great job in area of disease forecasting through Artificial Intelligence tools

Dept of Animal Husbandry & D... Secretary AHD @atul1chaturvedi visited to ICAR-NIVEDI, Interacted with the Scientist Involved in veterinary disease epidemiology.





WAVE Tool Accessibility Summary Report

**Message Alert** 

